有条件地删除行在 pandas 中不起作用

Conditionally deleting rows does not work as intended in pandas

我有一个数据框,其中包含一个包含重复样本(以 _2 结尾)的样本列和一个详细说明哪个是原始样本的列。新类别包含一种突变类型,其中 Pathogenic/Likely 致病性是最具破坏性的,而可能良性是破坏性最小的。下面演示了我的数据框的 reduced/basic 版本。

df = pd.DataFrame(columns=['Sample', 'same','New Category'],
             data=[
                   ['HG_12_34', 'HG_12_34', 'Pathogenic/Likely Pathogenic'],
                   ['HG_12_34_2', 'HG_12_34', 'Likely Benign'],
                   ['KD_89_9', 'KD_89_9', 'Likely Benign'],
                   ['KD_98_9_2', 'KD_89_9', 'Likely Benign'],
                   ['LG_3_45', 'LG_3_45', 'Likely Benign'],
                   ['LG_3_45_2', 'LG_3_45', 'VUS']
                   ])

我想有条件地删除一个样本或其副本,具体取决于哪个样本在新类别中具有最小的破坏性突变,即如果一个样本具有可能良性,而副本具有 Pathogenic/Likley 致病性变异,那么我想要 remove/delete 示例行。

我尝试将数据帧传递给一个函数,该函数 returns 代表要删除的行的索引列表,随后我删除了它们。

def get_unwanted_duplicates_ix(df):

    # filter df for samples that have a duplicate
    same_only = df.groupby("same").filter(lambda x: len(x) > 1)

    list_index_to_delete = []


    for num in range(0,same_only.shape[0]-1):

        row1 = same_only.irow(num)
        row2 = same_only.irow(num+1)
        index = list(same_only.index.values)[num]



        if row1['Sample']+"_2" == row2['Sample'] or \
           row1['Sample'] == row2['Sample']+"_2":

            if row1['New Category'] == row2['New Category']:
                list_index_to_delete.append(index+1)

            elif row1['New Category']  == "Pathogenic/Likely Pathogenic"  \
               and row2['New Category']  != "Pathogenic/Likely Pathogenic":
                list_index_to_delete.append(index+1)

            elif row2['New Category']  == "Pathogenic/Likely Pathogenic"  \
               and row1['New Category']  != "Pathogenic/Likely Pathogenic":
                list_index_to_delete.append(index)

            elif row1['New Category']  == "VUS"  \
               and row2['New Category']  != "VUS":
                list_index_to_delete.append(index+1)

            elif row2['New Category']  == "VUS"  \
               and row1['New Category']  != "VUS":
                list_index_to_delete.append(index)

            elif row1['New Category'] == 'Likely Benign' \
              and row2['New Category'] == 'Likely Benign':
                list_index_to_delete.append(index+1)

            else:
                list_index_to_delete.append(index+1)

    return list_index_to_delete

unwanted = get_unwanted_duplicates_ix(df)
df = df.drop(df.index[unwanted])

上面的功能一团糟,不出所料,没有达到我希望的效果。如果能指出正确方向,我们将不胜感激。

首先,将突变严重程度替换为整数(数值越高,破坏力越大)。

df['New Category code'] = df['New Category'].replace(
    {'Likely Benign': 1, 'VUS': 2, 'Pathogenic/Likely Pathogenic': 3})

下一个命令取决于您是否要保留具有相同严重性的多行。如果是,则按 same 列和 select 具有最大严重性代码的行分组:

df[df.groupby('same')['New Category code'].transform(max) == df['New Category code']]                   

      Sample      same                  New Category  New Category code
0   HG_12_34  HG_12_34  Pathogenic/Likely Pathogenic                  3
2    KD_89_9   KD_89_9                 Likely Benign                  1
3  KD_98_9_2   KD_89_9                 Likely Benign                  1
5  LG_3_45_2   LG_3_45                           VUS                  2

如果否(每组中始终只保留一行),则改为按严重性升序对值进行排序并取每组中的最后一行(感谢@JonClements 的想法):

df.sort_values('New Category code').groupby('same').last()

             Sample                  New Category  New Category code
same                                                                
HG_12_34   HG_12_34  Pathogenic/Likely Pathogenic                  3
KD_89_9   KD_98_9_2                 Likely Benign                  1
LG_3_45   LG_3_45_2                           VUS                  2