Tensorflow中如何使用多个汇总集合?

How to use several summary collections in Tensorflow?

我有两组不同的摘要。一个每批次收集一次,另一个每个时期收集一次。如何使用 merge_all_summaries(key='???') 分别收集这两个组的摘要?手动执行始终是一种选择,但似乎有更好的方法。

说明我认为它应该如何工作:

      # once per batch 
      tf.scalar_summary("loss", graph.loss)
      tf.scalar_summary("batch_acc", batch_accuracy)
      # once per epoch
      gradients = tf.gradients(graph.loss, [W, D])
      tf.histogram_summary("embedding/W", W, collections='per_epoch')
      tf.histogram_summary("embedding/D", D, collections='per_epoch')

      tf.merge_all_summaries()                # -> (MergeSummary...) :)
      tf.merge_all_summaries(key='per_epoch') # -> NONE              :(

问题已解决。 collections 摘要的参数应该是一个列表。 解决方案:

  # once per batch 
  tf.scalar_summary("loss", graph.loss)
  tf.scalar_summary("batch_acc", batch_accuracy)
  # once per epoch
  tf.histogram_summary("embedding/W", W, collections=['per_epoch'])
  tf.histogram_summary("embedding/D", D, collections=['per_epoch'])

  tf.merge_all_summaries()                # -> (MergeSummary...) :)
  tf.merge_all_summaries(key='per_epoch') # -> (MergeSummary...) :)

编辑。 TF 中的语法更改:

# once per batch 
  tf.summary.scalar("loss", graph.loss)
  tf.summary.scalar("batch_acc", batch_accuracy)
  # once per epoch
  tf.summary.histogram("embedding/W", W, collections=['per_epoch'])
  tf.summary.histogram("embedding/D", D, collections=['per_epoch'])

  tf.summary.merge_all()                # -> (MergeSummary...) :)
  tf.summary.merge_all(key='per_epoch') # -> (MergeSummary...) :)