连体网络输出

Siamese network output

我正在尝试在 caffe 中实现一个孪生网络,其中它由两个不共享权重的图像网络组成。所以我基本上想做的是给每个网络一个图像,最后尝试找出它们之间的相似性距离,下面是我的 prototxt。所以我的主要问题是我也应该设置 "num_output" 什么?我的训练只有 2 类,0 表示它们不相似,1 表示它们相似。

name: "Siamese_ImageNet"
layers {
  name: "data"
  type: IMAGE_DATA
  top: "data"
  top: "label"
  image_data_param {
    source: "train1.txt"
    batch_size: 32
    new_height: 256
    new_width: 256
  }
  include: { phase: TRAIN }
}
layers {
  name: "data"
  type: IMAGE_DATA
  top: "data"
  top: "label"
  image_data_param {
    source: "test1.txt"
    batch_size: 32
    new_height: 256
    new_width: 256
  }
  include: { phase: TEST }
}

layers {
  name: "data_p"
  type: IMAGE_DATA
  top: "data_p"
  top: "label_p"
  image_data_param {
    source: "train2.txt"
    batch_size: 32
    new_height: 256
    new_width: 256
  }
  include: { phase: TRAIN }
}
layers {
  name: "data_p"
  type: IMAGE_DATA
  top: "data_p"
  top: "label_p"
  image_data_param {
    source: "test2.txt"
    batch_size: 32
    new_height: 256
    new_width: 256
  }
  include: { phase: TEST }
}


layers {
  name: "conv1"
  type: CONVOLUTION
  bottom: "data"
  top: "conv1"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 96
    kernel_size: 11
    stride: 4
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layers {
  name: "relu1"
  type: RELU
  bottom: "conv1"
  top: "conv1"
}
layers {
  name: "pool1"
  type: POOLING
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "norm1"
  type: LRN
  bottom: "pool1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layers {
  name: "conv2"
  type: CONVOLUTION
  bottom: "norm1"
  top: "conv2"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 5
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu2"
  type: RELU
  bottom: "conv2"
  top: "conv2"
}
layers {
  name: "pool2"
  type: POOLING
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "norm2"
  type: LRN
  bottom: "pool2"
  top: "norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layers {
  name: "conv3"
  type: CONVOLUTION
  bottom: "norm2"
  top: "conv3"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layers {
  name: "relu3"
  type: RELU
  bottom: "conv3"
  top: "conv3"
}
layers {
  name: "conv4"
  type: CONVOLUTION
  bottom: "conv3"
  top: "conv4"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu4"
  type: RELU
  bottom: "conv4"
  top: "conv4"
}
layers {
  name: "conv5"
  type: CONVOLUTION
  bottom: "conv4"
  top: "conv5"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu5"
  type: RELU
  bottom: "conv5"
  top: "conv5"
}
layers {
  name: "pool5"
  type: POOLING
  bottom: "conv5"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "fc6"
  type: INNER_PRODUCT
  bottom: "pool5"
  top: "fc6"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu6"
  type: RELU
  bottom: "fc6"
  top: "fc6"
}
layers {
  name: "drop6"
  type: DROPOUT
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layers {
  name: "fc7"
  type: INNER_PRODUCT
  bottom: "fc6"
  top: "fc7"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 2
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu7"
  type: RELU
  bottom: "fc7"
  top: "fc7"
}
layers {
  name: "drop7"
  type: DROPOUT
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}

layers {
  name: "conv1_p"
  type: CONVOLUTION
  bottom: "data_p"
  top: "conv1_p"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 96
    kernel_size: 11
    stride: 4
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layers {
  name: "relu1_p"
  type: RELU
  bottom: "conv1_p"
  top: "conv1_p"
}
layers {
  name: "pool1_p"
  type: POOLING
  bottom: "conv1_p"
  top: "pool1_p"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "norm1_p"
  type: LRN
  bottom: "pool1_p"
  top: "norm1_p"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layers {
  name: "conv2_p"
  type: CONVOLUTION
  bottom: "norm1_p"
  top: "conv2_p"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 5
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu2_p"
  type: RELU
  bottom: "conv2_p"
  top: "conv2_p"
}
layers {
  name: "pool2_p"
  type: POOLING
  bottom: "conv2_p"
  top: "pool2_p"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "norm2_p"
  type: LRN
  bottom: "pool2_p"
  top: "norm2_p"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layers {
  name: "conv3_p"
  type: CONVOLUTION
  bottom: "norm2_p"
  top: "conv3_p"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layers {
  name: "relu3_p"
  type: RELU
  bottom: "conv3_p"
  top: "conv3_p"
}
layers {
  name: "conv4_p"
  type: CONVOLUTION
  bottom: "conv3_p"
  top: "conv4_p"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu4_p"
  type: RELU
  bottom: "conv4_p"
  top: "conv4_p"
}
layers {
  name: "conv5_p"
  type: CONVOLUTION
  bottom: "conv4_p"
  top: "conv5_p"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu5_p"
  type: RELU
  bottom: "conv5_p"
  top: "conv5_p"
}
layers {
  name: "pool5_p"
  type: POOLING
  bottom: "conv5_p"
  top: "pool5_p"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "fc6_p"
  type: INNER_PRODUCT
  bottom: "pool5_p"
  top: "fc6_p"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu6_p"
  type: RELU
  bottom: "fc6_p"
  top: "fc6_p"
}
layers {
  name: "drop6_p"
  type: DROPOUT
  bottom: "fc6_p"
  top: "fc6_p"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layers {
  name: "fc7_p"
  type: INNER_PRODUCT
  bottom: "fc6_p"
  top: "fc7_p"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 2
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu7_p"
  type: RELU
  bottom: "fc7_p"
  top: "fc7_p"
}
layers {
  name: "drop7_p"
  type: DROPOUT
  bottom: "fc7_p"
  top: "fc7_p"
  dropout_param {
    dropout_ratio: 0.5
  }
}

layers {
    name: "loss"
    type: CONTRASTIVE_LOSS
    contrastive_loss_param {
        margin: 1.0
    }
    bottom: "fc7"
    bottom: "fc7_p"
    bottom: "label"
    top: "loss"
}

我的训练文件结构: 0 不相似,1 相似

 train1.txt:
 /aer/img1_1.jpg 0
 /aer/img1_2.jpg 1
 /aer/img1_3.jpg 1

 train2.txt:
 /tpd/img2_1.jpg 0
 /tpd/img2_2.jpg 1
 /tpd/img2_3.jpg 1

What should I set my "num_output"?

在了解您应该设置多少 num_output 之前,让我们解释一下它的含义。事实上,你可以将 Simense 网络的两侧,data -> fc7data_p -> fc7_p 视为 2 个特征提取器。每个都从相应数据层的图像中提取特征,例如 fc7fc7_p。所以num_output定义了提取特征向量的维度。

在训练过程中,ContrastiveLoss 层总是尝试在两个提取的特征向量代表的图像相似时(label == 1)最小化距离,在不相似(label == 0).即特征向量的距离越小,图像越相似。

那么特征向量的最佳维度是多少才能最好地包含指示相似性的信息?或者你应该设置什么num_output?可能没有一个确切的值,这取决于特征提取器的编码质量(您可以将特征视为图像的代码)以及识别图像相似性的难易程度。所以基本上如果网络(特征提取器)很深并且不难识别相似性,你可以选择相对较小的 num_output 例如 200,因为特征可能会被更大的网络编码得更好并且更多歧视性的。如果不是,您可以尝试更大的值,例如500、1000 或尝试更复杂的网络。

如果你想尝试 MultinomialLogisticLoss 而不是 ContrastiveLoss 层,你应该首先使用像CONCAT 然后将其送入 SOFTMAX_LOSS 层,如下所示:

...#original layers
layers {
  name: "concat"
  type: CONCAT
  bottom: "fc7"
  bottom: "fc7_p"  
  top: "fc_concat" # concatenate fc7 and fc7_p along channel axis
}
layer {
  name: "fc_cls"
  type: INNER_PRODUCT
  bottom: "fc_concat"
  top: "fc_cls"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 2 # a binary classification problem in this case
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "accuracy"
  type: ACCURACY
  bottom: "fc_cls"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}
layer {
  name: "loss"
  type: SOFTMAX_LOSS
  bottom: "fc_cls"
  bottom: "label"
  top: "loss"
}

更新

Which is the best method to implement in order to compare similarity and use it for deploy, Constrastive Loss or SoftMax Loss?

Softmax Loss 简单易部署。但它只能给你二进制预测,即相似或不相似。它给出的 2 class(相似,不相似)的概率分布通常太硬(不均匀),例如[0.9*, 0.0*], [0.0*, 0.9*],....很多情况下并不能很好的反映真实的输入相似度

在使用 Constrastive Loss 时,您可以获得图像的判别特征向量。您可以使用该向量来计算相似性概率,就像 CVPR 2005 论文 Learning a Similarity Metric Discriminatively, with Application to Face Verification did in Section 4.1.(The key point is to compute a multivariate normal density using the feature vectors generated from the images belonging to a same subject). Also you can use a threshold to control the false positive rate and the false negative rate of the model to get a ROC curve 更好地评估模型一样。

对了,挖掘更多CNN架构来预测相似度,可以参考CVPR 2015论文Learning to Compare Image Patches via Convolutional Neural Networks.

只是为了更正 Dale 上面关于 Caffe 超级敏感语法的伟大 ,对于像我这样被卡住的菜鸟,这里有一些更正(层层到层,一些引号,加上注释的删除,以及有效的大写)

layer {
  name: "concat"
  type: "Concat"
  bottom: "fc7"
  bottom: "fc7_p"  
  top: "fc_concat"
}
layer {
  name: "fc_cls"
  type: "InnerProduct"
  bottom: "fc_concat"
  top: "fc_cls"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "fc_cls"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "fc_cls"
  bottom: "label"
  top: "loss"
}

我相信num_output定义了提取的特征向量的维度,然后提取的特征可以用来确定L2距离。如果 L2 距离大于 1 那么它是一个不同的 class 如果它接近 0图像相似。休息戴尔答案是完美的。