系数 table 在秩亏拟合中没有 NA 行;如何插入它们?
Coefficient table does not have NA rows in rank-deficient fit; how to insert them?
library(lmPerm)
x <- lmp(formula = a ~ b * c + d + e, data = df, perm = "Prob")
summary(x) # truncated output, I can see `NA` rows here!
#Coefficients: (1 not defined because of singularities)
# Estimate Iter Pr(Prob)
#b 5.874 51 1.000
#c -30.060 281 0.263
#b:c NA NA NA
#d1 -31.333 60 0.633
#d2 33.297 165 0.382
#d3 -19.096 51 1.000
#e 1.976 NA NA
我想提取所有内容的 Pr(Prob)
结果,但是
y <- summary(x)$coef[, "Pr(Prob)"]
#(Intercept) b c d1 d2
# 0.09459459 1.00000000 0.26334520 0.63333333 0.38181818
# d3 e
# 1.00000000 NA
这不是我想要的。我也需要 b:c
行,在正确的位置。
我希望从上面得到的输出示例是:
# (Intercept) b c b:c d1 d2
# 0.09459459 1.00000000 0.26334520 NA 0.63333333 0.38181818
# d3 e
# 1.00000000 NA
我也想拉出每个变量对应的Iter
列。谢谢。
lmp
是基于lm
,summary.lmp
的行为也和summary.lm
一样,所以我先用lm
来说明,然后证明我们可以为 lmp
.
做同样的事情
lm
和 summary.lm
阅读 ?summary.lm
并注意以下返回值:
coefficients: a p x 4 matrix with columns for the estimated
coefficient, its standard error, t-statistic and
corresponding (two-sided) p-value. Aliased coefficients are
omitted.
aliased: named logical vector showing if the original coefficients are
aliased.
当你有排名不足的模型时,NA
系数在系数 table 中被省略,它们被称为 aliased
变量。考虑以下可重现的小示例:
set.seed(0)
zz <- xx <- rnorm(10)
yy <- rnorm(10)
fit <- lm(yy ~ xx + zz)
coef(fit) ## we can see `NA` here
#(Intercept) xx zz
# 0.1295147 0.2706560 NA
a <- summary(fit) ## it is also printed to screen
#Coefficients: (1 not defined because of singularities)
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) 0.1295 0.3143 0.412 0.691
#xx 0.2707 0.2669 1.014 0.340
#zz NA NA NA NA
b <- coef(a) ## but no `NA` returned in the matrix / table
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) 0.1295147 0.3142758 0.4121051 0.6910837
#xx 0.2706560 0.2669118 1.0140279 0.3402525
d <- a$aliased
#(Intercept) xx zz
# FALSE FALSE TRUE
如果你想填充 NA
行到系数 table / 矩阵,我们可以做
## an augmented matrix of `NA`
e <- matrix(nrow = length(d), ncol = ncol(b),
dimnames = list(names(d), dimnames(b)[[2]]))
## fill rows for non-aliased variables
e[!d] <- b
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) 0.1295147 0.3142758 0.4121051 0.6910837
#xx 0.2706560 0.2669118 1.0140279 0.3402525
#zz NA NA NA NA
lmp
和 summary.lmp
无需更改。
library(lmPerm)
fit <- lmp(yy ~ xx + zz, perm = "Prob")
a <- summary(fit) ## `summary.lmp`
b <- coef(a)
# Estimate Iter Pr(Prob)
#(Intercept) -0.0264354 241 0.2946058
#xx 0.2706560 241 0.2946058
d <- a$aliased
#(Intercept) xx zz
# FALSE FALSE TRUE
e <- matrix(nrow = length(d), ncol = ncol(b),
dimnames = list(names(d), dimnames(b)[[2]]))
e[!d] <- b
# Estimate Iter Pr(Prob)
#(Intercept) -0.0264354 241 0.2946058
#xx 0.2706560 241 0.2946058
#zz NA NA NA
如果您想要提取 Iter
和 Pr(Prob)
,只需执行
e[, 2] ## e[, "Iter"]
#(Intercept) xx zz
# 241 241 NA
e[, 3] ## e[, "Pr(Prob)"]
#(Intercept) xx zz
# 0.2946058 0.2946058 NA
library(lmPerm)
x <- lmp(formula = a ~ b * c + d + e, data = df, perm = "Prob")
summary(x) # truncated output, I can see `NA` rows here!
#Coefficients: (1 not defined because of singularities)
# Estimate Iter Pr(Prob)
#b 5.874 51 1.000
#c -30.060 281 0.263
#b:c NA NA NA
#d1 -31.333 60 0.633
#d2 33.297 165 0.382
#d3 -19.096 51 1.000
#e 1.976 NA NA
我想提取所有内容的 Pr(Prob)
结果,但是
y <- summary(x)$coef[, "Pr(Prob)"]
#(Intercept) b c d1 d2
# 0.09459459 1.00000000 0.26334520 0.63333333 0.38181818
# d3 e
# 1.00000000 NA
这不是我想要的。我也需要 b:c
行,在正确的位置。
我希望从上面得到的输出示例是:
# (Intercept) b c b:c d1 d2
# 0.09459459 1.00000000 0.26334520 NA 0.63333333 0.38181818
# d3 e
# 1.00000000 NA
我也想拉出每个变量对应的Iter
列。谢谢。
lmp
是基于lm
,summary.lmp
的行为也和summary.lm
一样,所以我先用lm
来说明,然后证明我们可以为 lmp
.
lm
和 summary.lm
阅读 ?summary.lm
并注意以下返回值:
coefficients: a p x 4 matrix with columns for the estimated
coefficient, its standard error, t-statistic and
corresponding (two-sided) p-value. Aliased coefficients are
omitted.
aliased: named logical vector showing if the original coefficients are
aliased.
当你有排名不足的模型时,NA
系数在系数 table 中被省略,它们被称为 aliased
变量。考虑以下可重现的小示例:
set.seed(0)
zz <- xx <- rnorm(10)
yy <- rnorm(10)
fit <- lm(yy ~ xx + zz)
coef(fit) ## we can see `NA` here
#(Intercept) xx zz
# 0.1295147 0.2706560 NA
a <- summary(fit) ## it is also printed to screen
#Coefficients: (1 not defined because of singularities)
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) 0.1295 0.3143 0.412 0.691
#xx 0.2707 0.2669 1.014 0.340
#zz NA NA NA NA
b <- coef(a) ## but no `NA` returned in the matrix / table
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) 0.1295147 0.3142758 0.4121051 0.6910837
#xx 0.2706560 0.2669118 1.0140279 0.3402525
d <- a$aliased
#(Intercept) xx zz
# FALSE FALSE TRUE
如果你想填充 NA
行到系数 table / 矩阵,我们可以做
## an augmented matrix of `NA`
e <- matrix(nrow = length(d), ncol = ncol(b),
dimnames = list(names(d), dimnames(b)[[2]]))
## fill rows for non-aliased variables
e[!d] <- b
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) 0.1295147 0.3142758 0.4121051 0.6910837
#xx 0.2706560 0.2669118 1.0140279 0.3402525
#zz NA NA NA NA
lmp
和 summary.lmp
无需更改。
library(lmPerm)
fit <- lmp(yy ~ xx + zz, perm = "Prob")
a <- summary(fit) ## `summary.lmp`
b <- coef(a)
# Estimate Iter Pr(Prob)
#(Intercept) -0.0264354 241 0.2946058
#xx 0.2706560 241 0.2946058
d <- a$aliased
#(Intercept) xx zz
# FALSE FALSE TRUE
e <- matrix(nrow = length(d), ncol = ncol(b),
dimnames = list(names(d), dimnames(b)[[2]]))
e[!d] <- b
# Estimate Iter Pr(Prob)
#(Intercept) -0.0264354 241 0.2946058
#xx 0.2706560 241 0.2946058
#zz NA NA NA
如果您想要提取 Iter
和 Pr(Prob)
,只需执行
e[, 2] ## e[, "Iter"]
#(Intercept) xx zz
# 241 241 NA
e[, 3] ## e[, "Pr(Prob)"]
#(Intercept) xx zz
# 0.2946058 0.2946058 NA