将 NaN 放入 pandas python

drop NaN in pandas python

无法弄清楚为什么 .dropnan() 不删除具有 NaN 值的单元格?

求助,我已经阅读了 pandas 文档,不知道我做错了什么????

import pandas as pd
import quandl

import pandas as pd

df = quandl.get("GOOG/NYSE_SPY")
df2 = quandl.get("YAHOO/AAPL")

date = pd.date_range('2010-01-01', periods = 365)

df3 = pd.DataFrame(index = date)

df3 = df3.join(df['Open'], how = 'inner')

df3.rename(columns = {'Open': 'SPY'}, inplace = True)

df3 = df3.join(df2['Open'], how = 'inner')

df3.rename(columns = {'Open': 'AAPL'}, inplace = True)

df3['Spread'] = df3['SPY'] / df3['AAPL']

df3 = df3 / df3.ix[0]

df3.dropna(how = 'any')

df3.plot()

print(df3)

df3.dropna(how = 'any')更改为df3 = df3.dropna(how = 'any')

我试图用一个简单的 csv 文件来复制您的问题:

In [6]: df
Out[6]:
     a    b
0  1.0  3.0
1  2.0  NaN
2  NaN  6.0
3  5.0  3.0

df.dropna(how='any') 和 df1 = df.dropna(how='any') 都有效。即使只是 df.dropna() 也可以。我想知道你的问题是不是因为你在上一行进行了除法:

df3 = df3 / df3.ix[0]
df3.dropna(how = 'any')

例如,如果我除以 df.ix[1],因为其中一个元素是 NaN,它会将结果中一列的所有元素转换为 NaN,然后​​如果我使用dropna,它将删除所有行:

    In [17]: df.ix[1]
    Out[17]:
    a    2.0
    b    NaN
    Name: 1, dtype: float64

    In [18]: df2 = df / df.ix[1]
    In [19]: df2
    Out[19]:
         a   b
    0  0.5 NaN
    1  1.0 NaN
    2  NaN NaN
    3  2.5 NaN

    In [20]: df2.dropna()
    Out[20]:
    Empty DataFrame
    Columns: [a, b]
    Index: []