tee'd 生成器上的多处理

multiprocessing on tee'd generators

考虑以下脚本,我在其中测试了两种对 itertools.tee 获得的生成器执行某些计算的方法:

#!/usr/bin/env python3

from sys import argv
from itertools import tee
from multiprocessing import Process

def my_generator():
    for i in range(5):
        print(i)
        yield i

def double(x):
    return 2 * x

def compute_double_sum(iterable):
    s = sum(map(double, iterable))
    print(s)

def square(x):
    return x * x

def compute_square_sum(iterable):
    s = sum(map(square, iterable))
    print(s)

g1, g2 = tee(my_generator(), 2)

try:
    processing_type = argv[1]
except IndexError:
    processing_type = "no_multi"

if processing_type == "multi":
    p1 = Process(target=compute_double_sum, args=(g1,))
    p2 = Process(target=compute_square_sum, args=(g2,))
    print("p1 starts")
    p1.start()
    print("p2 starts")
    p2.start()
    p1.join()
    print("p1 finished")
    p2.join()
    print("p2 finished")
else:
    compute_double_sum(g1)
    compute_square_sum(g2)

以下是我在 "normal" 模式下 运行 脚本时获得的内容:

$ ./test_tee.py 
0
1
2
3
4
20
30

这里是并行模式:

$ ./test_tee.py multi
p1 starts
p2 starts
0
1
2
3
4
20
0
1
2
3
4
30
p1 finished
p2 finished

初始生成器显然 "copied" 执行了两次。

我想避免这种情况,因为在我的实际应用程序中,这似乎会在我用来制作初始生成器 (https://github.com/pysam-developers/pysam/issues/397) 的外部库之一中引发错误,并且仍然能够对相同的生成值进行并行计算。

有没有办法实现我想要的?

我在这里找到了一些替代方法:。

在这种方法中,我们不再使用生成器。我们只是复制它生成的项目并将它们提供给一个复合函数,该函数仅在一个进程中对生成的项目进行并行处理,但我们通过使用 Pool 来利用多处理(这就是所谓的 map/reduce方法?):

#!/usr/bin/env python3

from itertools import starmap
from multiprocessing import Pool
from functools import reduce
from operator import add

def my_generator():
    for i in range(5):
        print(i)
        yield i

def double(x):
    return 2 * x

def square(x):
    return x * x

def double_and_square(args_list):
    return (double(*args_list[0]), square(*args_list[1]))

def sum_tuples(tup1, tup2):
    return tuple(starmap(add, zip(tup1, tup2)))

with Pool(processes=5) as pool:
    results_generator = pool.imap_unordered(double_and_square, (((arg,), (arg,)) for arg in my_generator()))

    print(reduce(sum_tuples, results_generator))

这适用于玩具示例。我现在必须弄清楚如何在实际应用案例中类似地组织我的计算。

我尝试使用高阶函数 (make_funcs_applier) 对此进行概括以生成复合函数 (apply_funcs),但出现以下错误:

AttributeError: Can't pickle local object  'make_funcs_applier.<locals>.apply_funcs'

更普遍的尝试

根据评论中的建议,我尝试将上述解决方案改进为更 re-usable:

#!/usr/bin/env python3
"""This script tries to work around some limitations of multiprocessing."""

from itertools import repeat, starmap
from multiprocessing import Pool
from functools import reduce
from operator import add

# Doesn't work because local functions can't be pickled:
# def make_tuple_func(funcs):
#     def tuple_func(args_list):
#         return tuple(func(args) for func, args in zip(funcs, args_list))
#     return tuple_func
#
# test_tuple_func = make_tuple_func((plus_one, double, square))

class FuncApplier(object):
    """This kind of object can be used to group functions and call them on a
    tuple of arguments."""
    __slots__ = ("funcs", )

    def __init__(self, funcs):
        self.funcs = funcs

    def __len__(self):
        return len(self.funcs)

    def __call__(self, args_list):
        return tuple(func(args) for func, args in zip(self.funcs, args_list))

    def fork_args(self, args_list):
        """Takes an arguments list and repeat them in a n-tuple."""
        return tuple(repeat(args_list, len(self)))


def sum_tuples(*tuples):
    """Element-wise sum of tuple items."""
    return tuple(starmap(add, zip(*tuples)))


# Can't define these functions in main:
# They wouldn't be pickleable.
def plus_one(x):
    return x + 1

def double(x):
    return 2 * x

def square(x):
    return x * x

def main():
    def my_generator():
        for i in range(5):
            print(i)
            yield i


    test_tuple_func = FuncApplier((plus_one, double, square))

    with Pool(processes=5) as pool:
        results_generator = pool.imap_unordered(
            test_tuple_func,
            (test_tuple_func.fork_args(args_list) for args_list in my_generator()))
        print("sum of x+1:\t%s\nsum of 2*x:\t%s\nsum of x*x:\t%s" % reduce(
            sum_tuples, results_generator))
    exit(0)

if __name__ == "__main__":
    exit(main())

正在测试:

$ ./test_fork.py 
0
1
2
3
4
sum of x+1: 15
sum of 2*x: 20
sum of x*x: 30

对我来说仍然存在一些恼人的限制,因为我倾向于经常在我的代码中定义局部函数。

multiprocessing 系统将您的主模块导入到它启动的每个进程中。因此模块代码在每个进程中执行。

您可以使用 always-recommended

来避免这种情况
if __name__ == '__main__':

在你的 class 和函数定义之后,所以主程序的代码在启动过程中只有 运行s。这应该是仅 Windows 平台的要求,但它可能值得一试,因为您抱怨代码被 运行 两次。