在 numpy 数组求和中将 nan 视为零,除了所有数组中的 nan

Treat nan as zero in numpy array summation except for nan in all arrays

我有两个numpy数组NS,EW来总结一下。他们每个人在不同的位置都有缺失值,比如

NS = array([[  1.,   2.,  nan],
       [  4.,   5.,  nan],
       [  6.,  nan,  nan]])
EW = array([[  1.,   2.,  nan],
       [  4.,  nan,  nan],
       [  6.,  nan,   9.]]

如何以 numpy 方式执行求和运算,如果一个数组在某个位置有 nan,则将 nan 视为零,如果两个数组在同一位置都有 nan,则保留 nan。

我希望看到的结果是

SUM = array([[  2.,   4.,  nan],
           [  8.,  5.,  nan],
           [  12.,  nan,   9.]])

当我尝试时

SUM=np.add(NS,EW)

它给了我

SUM=array([[  2.,   4.,  nan],
       [  8.,  nan,  nan],
       [ 12.,  nan,  nan]])

当我尝试时

SUM = np.nansum(np.dstack((NS,EW)),2)

它给了我

SUM=array([[  2.,   4.,   0.],
       [  8.,   5.,   0.],
       [ 12.,   0.,   9.]])

当然可以通过元素级的操作来实现我的目的,

for i in range(np.size(NS,0)):
    for j in range(np.size(NS,1)):
        if np.isnan(NS[i,j]) and np.isnan(EW[i,j]):
            SUM[i,j] = np.nan
        elif np.isnan(NS[i,j]):
            SUM[i,j] = EW[i,j]
        elif np.isnan(EW[i,j]):
            SUM[i,j] = NS[i,j]
        else:
            SUM[i,j] = NS[i,j]+EW[i,j]

但是速度很慢。所以我正在寻找一个更麻木的解决方案来解决这个问题。

提前感谢您的帮助!

方法 #1: 一种方法 np.where -

def sum_nan_arrays(a,b):
    ma = np.isnan(a)
    mb = np.isnan(b)
    return np.where(ma&mb, np.nan, np.where(ma,0,a) + np.where(mb,0,b))

样本运行-

In [43]: NS
Out[43]: 
array([[  1.,   2.,  nan],
       [  4.,   5.,  nan],
       [  6.,  nan,  nan]])

In [44]: EW
Out[44]: 
array([[  1.,   2.,  nan],
       [  4.,  nan,  nan],
       [  6.,  nan,   9.]])

In [45]: sum_nan_arrays(NS, EW)
Out[45]: 
array([[  2.,   4.,  nan],
       [  8.,   5.,  nan],
       [ 12.,  nan,   9.]])

方法 #2: 可能是一种更快的方法,混合了 boolean-indexing -

def sum_nan_arrays_v2(a,b):
    ma = np.isnan(a)
    mb = np.isnan(b)
    m_keep_a = ~ma & mb
    m_keep_b = ma & ~mb
    out = a + b
    out[m_keep_a] = a[m_keep_a]
    out[m_keep_b] = b[m_keep_b]
    return out

运行时测试 -

In [140]: # Setup input arrays with 4/9 ratio of NaNs (same as in the question)
     ...: a = np.random.rand(3000,3000)
     ...: b = np.random.rand(3000,3000)
     ...: a.ravel()[np.random.choice(range(a.size), size=4000000, replace=0)] = np.nan
     ...: b.ravel()[np.random.choice(range(b.size), size=4000000, replace=0)] = np.nan
     ...: 

In [141]: np.nanmax(np.abs(sum_nan_arrays(a, b) - sum_nan_arrays_v2(a, b))) # Verify
Out[141]: 0.0

In [142]: %timeit sum_nan_arrays(a, b)
10 loops, best of 3: 141 ms per loop

In [143]: %timeit sum_nan_arrays_v2(a, b)
10 loops, best of 3: 177 ms per loop

In [144]: # Setup input arrays with lesser NaNs
     ...: a = np.random.rand(3000,3000)
     ...: b = np.random.rand(3000,3000)
     ...: a.ravel()[np.random.choice(range(a.size), size=4000, replace=0)] = np.nan
     ...: b.ravel()[np.random.choice(range(b.size), size=4000, replace=0)] = np.nan
     ...: 

In [145]: np.nanmax(np.abs(sum_nan_arrays(a, b) - sum_nan_arrays_v2(a, b))) # Verify
Out[145]: 0.0

In [146]: %timeit sum_nan_arrays(a, b)
10 loops, best of 3: 69.6 ms per loop

In [147]: %timeit sum_nan_arrays_v2(a, b)
10 loops, best of 3: 38 ms per loop

我认为我们可以更简洁一些,与 Divakar 的第二种方法相同。 a = NSb = EW:

na = numpy.isnan(a)
nb = numpy.isnan(b)
a[na] = 0
b[nb] = 0
a += b
na &= nb
a[na] = numpy.nan

操作已完成 in-place 在可能的情况下节省内存,假设这在您的场景中是可行的。最终结果在a.

实际上你的 nansum 方法几乎奏效了,你只需要在 nans 中再次添加:

def add_ignore_nans(a, b):
    stacked = np.array([a, b])
    res = np.nansum(stacked, axis=0)
    res[np.all(np.isnan(stacked), axis=0)] = np.nan
    return res

>>> add_ignore_nans(a, b)
array([[  2.,   4.,  nan],
       [  8.,   5.,  nan],
       [ 12.,  nan,   9.]])

这会比 @Divakar 的回答慢,但我想说你已经很接近了! :-)