使用由列变量确定的块大小加载 pandas 数据帧

Load pandas dataframe with chunksize determined by column variable

如果我的 csv 文件太大而无法使用 pandas 加载到内存中(在本例中为 35gb),我知道可以使用 chunksize 分块处理文件。

但是我想知道是否可以根据列中的值更改块大小。

我有一个 ID 列,每个 ID 都有几行信息,如下所示:

ID,   Time,  x, y
sasd, 10:12, 1, 3
sasd, 10:14, 1, 4
sasd, 10:32, 1, 2
cgfb, 10:02, 1, 6
cgfb, 10:13, 1, 3
aenr, 11:54, 2, 5
tory, 10:27, 1, 3
tory, 10:48, 3, 5
ect...

我不想将 ID 分成不同的块。例如,将处理大小为 4 的块:

ID,   Time,  x, y
sasd, 10:12, 1, 3
sasd, 10:14, 1, 4
sasd, 10:32, 1, 2
cgfb, 10:02, 1, 6
cgfb, 10:13, 1, 3 <--this extra line is included in the 4 chunk

ID,   Time,  x, y
aenr, 11:54, 2, 5
tory, 10:27, 1, 3
tory, 10:48, 3, 5
...

可能吗?

如果不是,也许可以使用带有 for 循环的 csv 库:

for line in file:
    x += 1
    if x > 1000000 and curid != line[0]:
        break
    curid = line[0]
    #code to append line to a dataframe

虽然我知道这只会创建一个块,并且 for 循环需要很长时间来处理。

如果逐行遍历 csv 文件,您可以 yield 使用依赖于任何列的生成器分块。

工作示例:

import pandas as pd

def iter_chunk_by_id(file):
    csv_reader = pd.read_csv(file, iterator=True, chunksize=1, header=None)
    first_chunk = csv_reader.get_chunk()
    id = first_chunk.iloc[0,0]
    chunk = pd.DataFrame(first_chunk)
    for l in csv_reader:
        if id == l.iloc[0,0]:
            id = l.iloc[0,0]
            chunk = chunk.append(l)
            continue
        id = l.iloc[0,0]
        yield chunk
        chunk = pd.DataFrame(l)
    yield chunk

## data.csv ##
# 1, foo, bla
# 1, off, aff
# 2, roo, laa
# 3, asd, fds
# 3, qwe, tre
# 3, tre, yxc   

chunk_iter = iter_chunk_by_id("data.csv")

for chunk in chunk_iter:
    print(chunk)
    print("_____")

输出:

   0     1     2
0  1   foo   bla
1  1   off   aff
_____
   0     1     2
2  2   roo   laa
3  2   jkl   xds
_____
   0     1     2
4  3   asd   fds
5  3   qwe   tre
6  3   tre   yxc
_____

我根据@elcombato 提供的答案构建了任意块大小。我实际上有一个类似的用例并且逐行处理使我的程序慢得无法忍受

def iter_chunk_by_id(file_name, chunk_size=10000):
"""generator to read the csv in chunks of user_id records. Each next call of generator will give a df for a user"""

csv_reader = pd.read_csv(file_name, compression='gzip', iterator=True, chunksize=chunk_size, header=0, error_bad_lines=False)
chunk = pd.DataFrame()
for l in csv_reader:
    l[['id', 'everything_else']] = l[
        'col_name'].str.split('|', 1, expand=True)
    hits = l['id'].astype(float).diff().dropna().nonzero()[0]
    if not len(hits):
        # if all ids are same
        chunk = chunk.append(l[['col_name']])
    else:
        start = 0
        for i in range(len(hits)):
            new_id = hits[i]+1
            chunk = chunk.append(l[['col_name']].iloc[start:new_id, :])
            yield chunk
            chunk = pd.DataFrame()
            start = new_id
        chunk = l[['col_name']].iloc[start:, :]

yield chunk