来自嵌套单词列表的共现矩阵

Co-occurrence matrix from nested list of words

我有一个名字列表,例如:

names = ['A', 'B', 'C', 'D']

和文件列表,在每个文件中都提到了其中一些名称。

document =[['A', 'B'], ['C', 'B', 'K'],['A', 'B', 'C', 'D', 'Z']]

我想得到一个输出矩阵,如:

  A  B  C  D
A 0  2  1  1
B 2  0  2  1
C 1  2  0  1
D 1  1  1  0

这个问题在 R 中有一个解决方案 (Creating co-occurrence matrix),但我在 Python 中做不到。我正考虑在 Pandas 内完成,但还没有进展!

显然这可以根据您的目的进行扩展,但它执行的是一般操作:

import math

for a in 'ABCD':
    for b in 'ABCD':
        count = 0

        for x in document:
            if a != b:
                if a in x and b in x:
                    count += 1

            else:
                n = x.count(a)
                if n >= 2:
                    count += math.factorial(n)/math.factorial(n - 2)/2

        print '{} x {} = {}'.format(a, b, count)
from collections import OrderedDict

document = [['A', 'B'], ['C', 'B'], ['A', 'B', 'C', 'D']]
names = ['A', 'B', 'C', 'D']

occurrences = OrderedDict((name, OrderedDict((name, 0) for name in names)) for name in names)

# Find the co-occurrences:
for l in document:
    for i in range(len(l)):
        for item in l[:i] + l[i + 1:]:
            occurrences[l[i]][item] += 1

# Print the matrix:
print(' ', ' '.join(occurrences.keys()))
for name, values in occurrences.items():
    print(name, ' '.join(str(i) for i in values.values()))

输出;

  A B C D
A 0 2 1 1 
B 2 0 2 1 
C 1 2 0 1 
D 1 1 1 0 

这是另一个使用 itertoolscollections 模块中的 Counter class 的解决方案。

import numpy
import itertools
from collections import Counter

document =[['A', 'B'], ['C', 'B'],['A', 'B', 'C', 'D']]

# Get all of the unique entries you have
varnames = tuple(sorted(set(itertools.chain(*document))))

# Get a list of all of the combinations you have
expanded = [tuple(itertools.combinations(d, 2)) for d in document]
expanded = itertools.chain(*expanded)

# Sort the combinations so that A,B and B,A are treated the same
expanded = [tuple(sorted(d)) for d in expanded]

# count the combinations
c = Counter(expanded)


# Create the table
table = numpy.zeros((len(varnames),len(varnames)), dtype=int)

for i, v1 in enumerate(varnames):
    for j, v2 in enumerate(varnames[i:]):        
        j = j + i 
        table[i, j] = c[v1, v2]
        table[j, i] = c[v1, v2]

# Display the output
for row in table:
    print(row)

输出(可以很容易地变成 DataFrame)是:

[0 2 1 1]
[2 0 2 1]
[1 2 0 1]
[1 1 1 0]

您也可以使用矩阵技巧来找到共现矩阵。希望当你有更大的词汇量时这能很好地工作。

import scipy.sparse as sp
voc2id = dict(zip(names, range(len(names))))
rows, cols, vals = [], [], []
for r, d in enumerate(document):
    for e in d:
        if voc2id.get(e) is not None:
            rows.append(r)
            cols.append(voc2id[e])
            vals.append(1)
X = sp.csr_matrix((vals, (rows, cols)))

现在,您可以通过简单地将 X.TX

相乘来找到共现矩阵
Xc = (X.T * X) # coocurrence matrix
Xc.setdiag(0)
print(Xc.toarray())

另一种选择是使用构造函数 csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)]) 来自 scipy.sparse.csr_matrix 其中 datarow_indcol_ind 满足 关系 a[row_ind[k], col_ind[k]] = data[k].

诀窍是通过遍历文档并创建元组列表 (doc_id、word_id) 来生成 row_indcol_inddata 只是一个相同长度的矢量。

将 docs-words 矩阵与其转置相乘将得到 co-occurences 矩阵。

此外,这在 运行 次和内存使用方面都是高效的,因此它也应该处理大型语料库。

import numpy as np
import itertools
from scipy.sparse import csr_matrix


def create_co_occurences_matrix(allowed_words, documents):
    print(f"allowed_words:\n{allowed_words}")
    print(f"documents:\n{documents}")
    word_to_id = dict(zip(allowed_words, range(len(allowed_words))))
    documents_as_ids = [np.sort([word_to_id[w] for w in doc if w in word_to_id]).astype('uint32') for doc in documents]
    row_ind, col_ind = zip(*itertools.chain(*[[(i, w) for w in doc] for i, doc in enumerate(documents_as_ids)]))
    data = np.ones(len(row_ind), dtype='uint32')  # use unsigned int for better memory utilization
    max_word_id = max(itertools.chain(*documents_as_ids)) + 1
    docs_words_matrix = csr_matrix((data, (row_ind, col_ind)), shape=(len(documents_as_ids), max_word_id))  # efficient arithmetic operations with CSR * CSR
    words_cooc_matrix = docs_words_matrix.T * docs_words_matrix  # multiplying docs_words_matrix with its transpose matrix would generate the co-occurences matrix
    words_cooc_matrix.setdiag(0)
    print(f"words_cooc_matrix:\n{words_cooc_matrix.todense()}")
    return words_cooc_matrix, word_to_id 

运行 示例:

allowed_words = ['A', 'B', 'C', 'D']
documents = [['A', 'B'], ['C', 'B', 'K'],['A', 'B', 'C', 'D', 'Z']]
words_cooc_matrix, word_to_id = create_co_occurences_matrix(allowed_words, documents)

输出:

allowed_words:
['A', 'B', 'C', 'D']

documents:
[['A', 'B'], ['C', 'B', 'K'], ['A', 'B', 'C', 'D', 'Z']]

words_cooc_matrix:
[[0 2 1 1]
 [2 0 2 1]
 [1 2 0 1]
 [1 1 1 0]]

我遇到了同样的问题...所以我得到了这段代码。此代码考虑了上下文 window,然后确定 co_occurance 矩阵。

希望这对你有帮助...

def countOccurences(word,context_window): 

    """
    This function returns the count of context word.
    """ 
    return context_window.count(word)

def co_occurance(feature_dict,corpus,window = 5):
    """
    This function returns co_occurance matrix for the given window size. Default is 5.

    """
    length = len(feature_dict)
    co_matrix = np.zeros([length,length]) # n is the count of all words

    corpus_len = len(corpus)
    for focus_word in top_features:

        for context_word in top_features[top_features.index(focus_word):]:
            # print(feature_dict[context_word])
            if focus_word == context_word:
                co_matrix[feature_dict[focus_word],feature_dict[context_word]] = 0
            else:
                start_index = 0
                count = 0
                while(focus_word in corpus[start_index:]):

                    # get the index of focus word
                    start_index = corpus.index(focus_word,start_index)
                    fi,li = max(0,start_index - window) , min(corpus_len-1,start_index + window)

                    count += countOccurences(context_word,corpus[fi:li+1])
                    # updating start index
                    start_index += 1

                # update [Aij]
                co_matrix[feature_dict[focus_word],feature_dict[context_word]] = count
                # update [Aji]
                co_matrix[feature_dict[context_word],feature_dict[focus_word]] = count
    return co_matrix

'''for a window of 2, data_corpus is the series consisting of text data, words is the list consisting of words for which co-occurence matrix is build'''

"co_oc is the co-occurence matrix"

co_oc=pd.DataFrame(index=words,columns=words)

for j in tqdm(data_corpus):

    k=j.split()

    for l in range(len(k)):

        if l>=5 and l<(len(k)-6):
            if k[l] in words:
                for m in range(l-5,l+6):
                    if m==l:
                        continue
                    elif k[m] in words:
                        co_oc[k[l]][k[m]]+=1

        elif l>=(len(k)-6):
            if k[l] in words:
                for m in range(l-5,len(k)):
                    if m==l:
                        continue
                    elif k[m] in words:
                        co_oc[k[l]][k[m]]+=1

        else:
            if k[l] in words:
                for m in range(0,l+5):
                    if m==l:
                        continue
                    elif k[m] in words:
                        co_oc[k[l]][k[m]]+=1
print(co_oc.head())

我们可以使用 NetworkX 极大地简化这个过程。这里names是我们要考虑的节点,document中的列表包含要连接的节点。

我们可以连接每个子列表中的节点,长度为 2 combinations,并创建一个 MultiGraph 来解释 co-occurrence:

import networkx as nx
from itertools import combinations

G = nx.from_edgelist((c for n_nodes in document for c in combinations(n_nodes, r=2)),
                     create_using=nx.MultiGraph)
nx.to_pandas_adjacency(G, nodelist=names, dtype='int')

   A  B  C  D
A  0  2  1  1
B  2  0  2  1
C  1  2  0  1
D  1  1  1  0