TensorFlow 中 logits 的形状错误
Error in shape of logits in TensorFlow
我正在使用 TensorFlow 构建 LSTM,我认为我错误地定义了我的输出,因为我收到以下错误:
InvalidArgumentError (see above for traceback): logits and labels must have the same first dimension, got logits shape [160,14313] and labels shape [10]
[[Node: SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits = SparseSoftmaxCrossEntropyWithLogits[T=DT_FLOAT, Tlabels=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](add, Reshape_1)]]
此处的关键是:“得到逻辑形状 [160,14313] 和标签形状 [10]”。 num_steps
是否仍在考虑输出的形状?
输入是 num_steps
(16) 宽
输出只是大小
1, 都带 batch_size
10.
我是这样定义网络的:
x = tf.placeholder(tf.int32, [None, num_steps], name='input_placeholder')
y = tf.placeholder(tf.int32, [None, 1], name='labels_placeholder')
x_one_hot = tf.one_hot(x, num_classes)
rnn_inputs = [tf.squeeze(i, squeeze_dims=[1]) for i in
tf.split(x_one_hot, num_steps, 1)] # still a list of tensors (batch_size, num_classes)
tmp = tf.stack(rnn_inputs)
print(tmp.get_shape())
tmp2 = tf.transpose(tmp, perm=[1, 0, 2])
print(tmp2.get_shape())
rnn_inputs = tmp2
cell = tf.contrib.rnn.LSTMCell(state_size, state_is_tuple=True)
cell = tf.contrib.rnn.MultiRNNCell([cell] * num_layers, state_is_tuple=True)
init_state = cell.zero_state(batch_size, tf.float32)
print(init_state)
rnn_outputs, final_state = tf.nn.dynamic_rnn(cell, rnn_inputs, initial_state=init_state)
with tf.variable_scope('softmax'):
W = tf.get_variable('W', [state_size, num_classes])
b = tf.get_variable('b', [num_classes], initializer=tf.constant_initializer(0.0))
#reshape rnn_outputs and y
rnn_outputs = tf.reshape(rnn_outputs, [-1, state_size])
y_reshaped = tf.reshape(y, [-1])
logits = tf.matmul(rnn_outputs, W) + b
通过添加此行修复:
rnn_outputs = rnn_outputs[:, num_steps-1, :]
我正在使用 TensorFlow 构建 LSTM,我认为我错误地定义了我的输出,因为我收到以下错误:
InvalidArgumentError (see above for traceback): logits and labels must have the same first dimension, got logits shape [160,14313] and labels shape [10]
[[Node: SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits = SparseSoftmaxCrossEntropyWithLogits[T=DT_FLOAT, Tlabels=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](add, Reshape_1)]]
此处的关键是:“得到逻辑形状 [160,14313] 和标签形状 [10]”。 num_steps
是否仍在考虑输出的形状?
输入是 num_steps
(16) 宽
输出只是大小
1, 都带 batch_size
10.
我是这样定义网络的:
x = tf.placeholder(tf.int32, [None, num_steps], name='input_placeholder')
y = tf.placeholder(tf.int32, [None, 1], name='labels_placeholder')
x_one_hot = tf.one_hot(x, num_classes)
rnn_inputs = [tf.squeeze(i, squeeze_dims=[1]) for i in
tf.split(x_one_hot, num_steps, 1)] # still a list of tensors (batch_size, num_classes)
tmp = tf.stack(rnn_inputs)
print(tmp.get_shape())
tmp2 = tf.transpose(tmp, perm=[1, 0, 2])
print(tmp2.get_shape())
rnn_inputs = tmp2
cell = tf.contrib.rnn.LSTMCell(state_size, state_is_tuple=True)
cell = tf.contrib.rnn.MultiRNNCell([cell] * num_layers, state_is_tuple=True)
init_state = cell.zero_state(batch_size, tf.float32)
print(init_state)
rnn_outputs, final_state = tf.nn.dynamic_rnn(cell, rnn_inputs, initial_state=init_state)
with tf.variable_scope('softmax'):
W = tf.get_variable('W', [state_size, num_classes])
b = tf.get_variable('b', [num_classes], initializer=tf.constant_initializer(0.0))
#reshape rnn_outputs and y
rnn_outputs = tf.reshape(rnn_outputs, [-1, state_size])
y_reshaped = tf.reshape(y, [-1])
logits = tf.matmul(rnn_outputs, W) + b
通过添加此行修复:
rnn_outputs = rnn_outputs[:, num_steps-1, :]