Apache Spark 运行 spark-shell 出现 YARN 错误

Apache Spark running spark-shell on YARN error

我从 http://spark.apache.org/downloads.html 下载了:spark-2.1.0-bin-hadoop2.7.tgz。我的 Hadoop HDFS 和 YARN 以 $ start-dfs.sh$ start-yarn.sh 开头。但是 运行 $ spark-shell --master yarn --deploy-mode client 给我以下错误:

    $ spark-shell --master yarn --deploy-mode client
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
17/04/08 23:04:54 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/04/08 23:04:54 WARN util.Utils: Your hostname, Pandora resolves to a loopback address: 127.0.1.1; using 192.168.1.11 instead (on interface wlp3s0)
17/04/08 23:04:54 WARN util.Utils: Set SPARK_LOCAL_IP if you need to bind to another address
17/04/08 23:04:56 WARN yarn.Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
17/04/08 23:05:15 ERROR cluster.YarnClientSchedulerBackend: Yarn application has already exited with state FINISHED!
17/04/08 23:05:15 ERROR spark.SparkContext: Error initializing SparkContext.
java.lang.IllegalStateException: Spark context stopped while waiting for backend
    at org.apache.spark.scheduler.TaskSchedulerImpl.waitBackendReady(TaskSchedulerImpl.scala:614)
    at org.apache.spark.scheduler.TaskSchedulerImpl.postStartHook(TaskSchedulerImpl.scala:169)
    at org.apache.spark.SparkContext.<init>(SparkContext.scala:567)
    at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2313)
    at org.apache.spark.sql.SparkSession$Builder$$anonfun.apply(SparkSession.scala:868)
    at org.apache.spark.sql.SparkSession$Builder$$anonfun.apply(SparkSession.scala:860)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:860)
    at org.apache.spark.repl.Main$.createSparkSession(Main.scala:95)
    at $line3.$read$$iw$$iw.<init>(<console>:15)
    at $line3.$read$$iw.<init>(<console>:42)
    at $line3.$read.<init>(<console>:44)
    at $line3.$read$.<init>(<console>:48)
    at $line3.$read$.<clinit>(<console>)
    at $line3.$eval$.$print$lzycompute(<console>:7)
    at $line3.$eval$.$print(<console>:6)
    at $line3.$eval.$print(<console>)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
    at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
    at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq.apply(IMain.scala:638)
    at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq.apply(IMain.scala:637)
    at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
    at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
    at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
    at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
    at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
    at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
    at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
    at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
    at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark.apply$mcV$sp(SparkILoop.scala:38)
    at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark.apply(SparkILoop.scala:37)
    at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark.apply(SparkILoop.scala:37)
    at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
    at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:37)
    at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:105)
    at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply$mcZ$sp(ILoop.scala:920)
    at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply(ILoop.scala:909)
    at scala.tools.nsc.interpreter.ILoop$$anonfun$process.apply(ILoop.scala:909)
    at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
    at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
    at org.apache.spark.repl.Main$.doMain(Main.scala:68)
    at org.apache.spark.repl.Main$.main(Main.scala:51)
    at org.apache.spark.repl.Main.main(Main.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:738)
    at org.apache.spark.deploy.SparkSubmit$.doRunMain(SparkSubmit.scala:187)
    at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
    at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
    at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
17/04/08 23:05:15 ERROR client.TransportClient: Failed to send RPC 7918328175210939600 to /192.168.1.11:56186: java.nio.channels.ClosedChannelException
java.nio.channels.ClosedChannelException
    at io.netty.channel.AbstractChannel$AbstractUnsafe.write(...)(Unknown Source)
17/04/08 23:05:15 ERROR cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: Sending RequestExecutors(0,0,Map()) to AM was unsuccessful
java.io.IOException: Failed to send RPC 7918328175210939600 to /192.168.1.11:56186: java.nio.channels.ClosedChannelException
    at org.apache.spark.network.client.TransportClient.operationComplete(TransportClient.java:249)
    at org.apache.spark.network.client.TransportClient.operationComplete(TransportClient.java:233)
    at io.netty.util.concurrent.DefaultPromise.notifyListener0(DefaultPromise.java:514)
    at io.netty.util.concurrent.DefaultPromise.notifyListenersNow(DefaultPromise.java:488)
    at io.netty.util.concurrent.DefaultPromise.access[=12=]0(DefaultPromise.java:34)
    at io.netty.util.concurrent.DefaultPromise.run(DefaultPromise.java:438)
    at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:408)
    at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:455)
    at io.netty.util.concurrent.SingleThreadEventExecutor.run(SingleThreadEventExecutor.java:140)
    at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144)
    at java.lang.Thread.run(Thread.java:745)
Caused by: java.nio.channels.ClosedChannelException
    at io.netty.channel.AbstractChannel$AbstractUnsafe.write(...)(Unknown Source)
17/04/08 23:05:15 ERROR util.Utils: Uncaught exception in thread Yarn application state monitor
org.apache.spark.SparkException: Exception thrown in awaitResult
    at org.apache.spark.rpc.RpcTimeout$$anonfun.applyOrElse(RpcTimeout.scala:77)
    at org.apache.spark.rpc.RpcTimeout$$anonfun.applyOrElse(RpcTimeout.scala:75)
    at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
    at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout.applyOrElse(RpcTimeout.scala:59)
    at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout.applyOrElse(RpcTimeout.scala:59)
    at scala.PartialFunction$OrElse.apply(PartialFunction.scala:167)
    at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:83)
    at org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.requestTotalExecutors(CoarseGrainedSchedulerBackend.scala:512)
    at org.apache.spark.scheduler.cluster.YarnSchedulerBackend.stop(YarnSchedulerBackend.scala:93)
    at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.stop(YarnClientSchedulerBackend.scala:151)
    at org.apache.spark.scheduler.TaskSchedulerImpl.stop(TaskSchedulerImpl.scala:467)
    at org.apache.spark.scheduler.DAGScheduler.stop(DAGScheduler.scala:1588)
    at org.apache.spark.SparkContext$$anonfun$stop.apply$mcV$sp(SparkContext.scala:1826)
    at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1283)
    at org.apache.spark.SparkContext.stop(SparkContext.scala:1825)
    at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend$MonitorThread.run(YarnClientSchedulerBackend.scala:108)
Caused by: java.io.IOException: Failed to send RPC 7918328175210939600 to /192.168.1.11:56186: java.nio.channels.ClosedChannelException
    at org.apache.spark.network.client.TransportClient.operationComplete(TransportClient.java:249)
    at org.apache.spark.network.client.TransportClient.operationComplete(TransportClient.java:233)
    at io.netty.util.concurrent.DefaultPromise.notifyListener0(DefaultPromise.java:514)
    at io.netty.util.concurrent.DefaultPromise.notifyListenersNow(DefaultPromise.java:488)
    at io.netty.util.concurrent.DefaultPromise.access[=12=]0(DefaultPromise.java:34)
    at io.netty.util.concurrent.DefaultPromise.run(DefaultPromise.java:438)
    at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:408)
    at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:455)
    at io.netty.util.concurrent.SingleThreadEventExecutor.run(SingleThreadEventExecutor.java:140)
    at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144)
    at java.lang.Thread.run(Thread.java:745)
Caused by: java.nio.channels.ClosedChannelException
    at io.netty.channel.AbstractChannel$AbstractUnsafe.write(...)(Unknown Source)
java.lang.IllegalStateException: Spark context stopped while waiting for backend
  at org.apache.spark.scheduler.TaskSchedulerImpl.waitBackendReady(TaskSchedulerImpl.scala:614)
  at org.apache.spark.scheduler.TaskSchedulerImpl.postStartHook(TaskSchedulerImpl.scala:169)
  at org.apache.spark.SparkContext.<init>(SparkContext.scala:567)
  at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2313)
  at org.apache.spark.sql.SparkSession$Builder$$anonfun.apply(SparkSession.scala:868)
  at org.apache.spark.sql.SparkSession$Builder$$anonfun.apply(SparkSession.scala:860)
  at scala.Option.getOrElse(Option.scala:121)
  at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:860)
  at org.apache.spark.repl.Main$.createSparkSession(Main.scala:95)
  ... 47 elided
<console>:14: error: not found: value spark
       import spark.implicits._
              ^
<console>:14: error: not found: value spark
       import spark.sql
              ^
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.1.0
      /_/

Using Scala version 2.11.8 (OpenJDK 64-Bit Server VM, Java 1.8.0_121)
Type in expressions to have them evaluated.
Type :help for more information.

YARN 检测到 Spark 是 运行 它,但错误导致 Spark 以未定义状态退出。

我从另一个 Whosebug 问题中找到了解决方案。这不是关于配置 Apache Spark,而是关于配置 Hadoop YARN:

Running yarn with spark not working with Java 8

确保您的 Hadoop 配置文件夹中的 yarn-site.xml 具有以下属性:

<property>
    <name>yarn.nodemanager.pmem-check-enabled</name>
    <value>false</value>
</property>

<property>
    <name>yarn.nodemanager.vmem-check-enabled</name>
    <value>false</value>
</property>

我遇到了和你一样的问题。当我检查 NodeManager 日志时,我发现这个警告:

2017-10-26 19:43:21,787 WARN org.apache.hadoop.yarn.server.nodemanager.containermanager.monitor.ContainersMonitorImpl: Container [pid=3820,containerID=container_1509016963775_0001_02_000001] is running beyond virtual memory limits. Current usage: 339.0 MB of 1 GB physical memory used; 2.2 GB of 2.1 GB virtual memory used. Killing container.

所以我设置了更大的虚拟内存(yarn.nodemanager.vmem-pmem-ratio in yarn-site.xml,默认值为2.1)。然后果然有效