如何使用 networkx 绘制社区

how to draw communities with networkx

如何使用 python networkx 绘制其社区图表,如下图:

image url

networkx.draw_networkx_nodesnetworkx.draw_networkx_edges 的文档解释了如何设置节点和边缘颜色。可以通过找到每个社区的节点位置然后绘制包含所有位置(然后是一些位置)的补丁(例如 matplotlib.patches.Circle)来制作社区边界补丁。

难点在于图形布局/设置节点位置。 AFAIK,networkx 中没有例程可以“开箱即用”地实现所需的图形布局。您要做的是:

  1. 相对于彼此定位社区:创建一个新的加权图,其中每个节点对应一个社区,权重对应社区之间的边数。使用您最喜欢的图形布局算法(例如spring_layout)获得体面的布局。

  2. 在每个社区内定位节点:为每个社区创建一个新图。找到子图的布局。

  3. 合并1)和3)中的节点位置。例如。将 1) 中计算的社区位置缩放为 10 倍;将这些值添加到该社区内所有节点的位置(如 2)中计算的)。

我一直想实现这个。我可能会在今天晚些时候或周末完成。

编辑:

瞧。现在你只需要在节点周围(后面)绘制你最喜欢的补丁。

import numpy as np
import matplotlib.pyplot as plt
import networkx as nx

def community_layout(g, partition):
    """
    Compute the layout for a modular graph.


    Arguments:
    ----------
    g -- networkx.Graph or networkx.DiGraph instance
        graph to plot

    partition -- dict mapping int node -> int community
        graph partitions


    Returns:
    --------
    pos -- dict mapping int node -> (float x, float y)
        node positions

    """

    pos_communities = _position_communities(g, partition, scale=3.)

    pos_nodes = _position_nodes(g, partition, scale=1.)

    # combine positions
    pos = dict()
    for node in g.nodes():
        pos[node] = pos_communities[node] + pos_nodes[node]

    return pos

def _position_communities(g, partition, **kwargs):

    # create a weighted graph, in which each node corresponds to a community,
    # and each edge weight to the number of edges between communities
    between_community_edges = _find_between_community_edges(g, partition)

    communities = set(partition.values())
    hypergraph = nx.DiGraph()
    hypergraph.add_nodes_from(communities)
    for (ci, cj), edges in between_community_edges.items():
        hypergraph.add_edge(ci, cj, weight=len(edges))

    # find layout for communities
    pos_communities = nx.spring_layout(hypergraph, **kwargs)

    # set node positions to position of community
    pos = dict()
    for node, community in partition.items():
        pos[node] = pos_communities[community]

    return pos

def _find_between_community_edges(g, partition):

    edges = dict()

    for (ni, nj) in g.edges():
        ci = partition[ni]
        cj = partition[nj]

        if ci != cj:
            try:
                edges[(ci, cj)] += [(ni, nj)]
            except KeyError:
                edges[(ci, cj)] = [(ni, nj)]

    return edges

def _position_nodes(g, partition, **kwargs):
    """
    Positions nodes within communities.
    """

    communities = dict()
    for node, community in partition.items():
        try:
            communities[community] += [node]
        except KeyError:
            communities[community] = [node]

    pos = dict()
    for ci, nodes in communities.items():
        subgraph = g.subgraph(nodes)
        pos_subgraph = nx.spring_layout(subgraph, **kwargs)
        pos.update(pos_subgraph)

    return pos

def test():
    # to install networkx 2.0 compatible version of python-louvain use:
    # pip install -U git+https://github.com/taynaud/python-louvain.git@networkx2
    from community import community_louvain

    g = nx.karate_club_graph()
    partition = community_louvain.best_partition(g)
    pos = community_layout(g, partition)

    nx.draw(g, pos, node_color=list(partition.values())); plt.show()
    return

附录

虽然总体思路不错,但我上面的旧实现有一些问题。最重要的是,该实施对于规模不均的社区效果不佳。具体来说,_position_communities 在 canvas 上为每个社区提供相同数量的房地产。如果一些社区比其他社区大得多,这些社区最终会被压缩成与小社区相同数量的 space。显然,这并不能很好地反映图的结构。

我写了一个可视化网络的库,叫做 netgraph。它包括上述社区布局例程的改进版本,在安排社区时也会考虑社区的大小。它与 networkxigraph Graph 对象完全兼容,因此制作美观的图表应该简单快捷(至少是这样的想法)。

import matplotlib.pyplot as plt
import networkx as nx

# installation easiest via pip:
# pip install netgraph
from netgraph import Graph

# create a modular graph
partition_sizes = [10, 20, 30, 40]
g = nx.random_partition_graph(partition_sizes, 0.5, 0.1)

# since we created the graph, we know the best partition:
node_to_community = dict()
node = 0
for community_id, size in enumerate(partition_sizes):
    for _ in range(size):
        node_to_community[node] = community_id
        node += 1

# # alternatively, we can infer the best partition using Louvain:
# from community import community_louvain
# node_to_community = community_louvain.best_partition(g)

community_to_color = {
    0 : 'tab:blue',
    1 : 'tab:orange',
    2 : 'tab:green',
    3 : 'tab:red',
}
node_color = {node: community_to_color[community_id] for node, community_id in node_to_community.items()}

Graph(g,
      node_color=node_color, node_edge_width=0, edge_alpha=0.1,
      node_layout='community', node_layout_kwargs=dict(node_to_community=node_to_community),
      edge_layout='bundled', edge_layout_kwargs=dict(k=2000),
)

plt.show()