Rcpp 和 R 代码之间的结果不一致
Inconsistent results between Rcpp and R code
更新
前面的例子比较复杂,所以请允许我使用一个更简单的例子,如下所示:
这是Rcpp代码:
#include <RcppArmadillo.h>
#include <RcppArmadilloExtensions/sample.h>
#include <Rmath.h>
#include <Rcpp.h>
// [[Rcpp::depends(RcppArmadillo)]]
using namespace Rcpp ;
using namespace arma;
using namespace std;
// [[Rcpp::export]]
double chooseC(double n, double k) {
return Rf_choose(n, k);
}
// [[Rcpp::export]]
double function3(double n, double m, double beta) {
double prob;
NumericVector k(m);
NumericVector k_vec(m);
if(n<m){prob=0;}
else{
if(chooseC(n,m)==R_PosInf){
k=seq_len(m)-1;
k_vec= (n-k)/(m-k)*std::pow((1-beta),(n-m)/m)*beta;
prob=std::accumulate(k_vec.begin(),k_vec.end(), 1, std::multiplies<double>())*beta;
}
else{
prob = beta * chooseC(n,m) * std::pow(beta,m) * std::pow((1-beta),(n-m));
}
}
return(prob);
}
R代码如下:
function4 <- function ( n , m , beta )
{
if ( n < m )
{
prob <- 0.0
}
else
{
if (is.infinite(choose(n,m))){
k<-0:(m-1)
prob <- beta *prod((n-k)/(m-k)*(1-beta)^((n-m)/m)*beta)
}
else{
prob <- beta * choose(n,m) * beta^m * (1-beta)^(n-m)
}
}
prob
}
比较:
input<-619
beta<-0.09187495
x<-seq(0, (input+1)/beta*3)
yy<-sapply(x,function(n)function3(n,input, beta=beta))
yy2<-sapply(x,function(n)function4(n,input, beta=beta))
sum(yy)=0
sum(yy2)=1
然而,与其他输入:
input<-1
beta<-0.08214248
两个结果相同,sum(yy)=sum(yy2)=0.9865887
。
我在Rcpp代码中使用了double
,不知道还有什么会导致Rcpp和R代码精度不一致
非常感谢!
我想我修复了 Rcpp 代码,所以现在当结果非常小时,Rcpp 和 R 代码会产生相同的结果。解决方法如下图:
#include <RcppArmadillo.h>
#include <RcppArmadilloExtensions/sample.h>
#include <Rmath.h>
#include <Rcpp.h>
// [[Rcpp::depends(RcppArmadillo)]]
using namespace Rcpp ;
using namespace arma;
using namespace std;
// [[Rcpp::export]]
double chooseC(double n, double k) {
return Rf_choose(n, k);
}
// [[Rcpp::export]]
double function3(double n, double m, double beta) {
double prob;
arma::vec k = arma::linspace<vec>(0, m-1, m);
arma::vec k_vec;
if(n<m){prob=0;}
else{
if(chooseC(n,m)==R_PosInf){
k_vec= (n-k)/(m-k)*pow((1-beta),(n-m)/m)*beta;
prob=arma::prod(k_vec)*beta;
}
else{
prob = beta * chooseC(n,m) * pow(beta,m) * pow((1-beta),(n-m));
}
}
return(prob);
}
但是我还是不明白为什么这样写代码会修复精度不一致的问题。 Rcpp
和 RcppArmadillo
对我来说仍然像黑盒子。
更新 前面的例子比较复杂,所以请允许我使用一个更简单的例子,如下所示:
这是Rcpp代码:
#include <RcppArmadillo.h>
#include <RcppArmadilloExtensions/sample.h>
#include <Rmath.h>
#include <Rcpp.h>
// [[Rcpp::depends(RcppArmadillo)]]
using namespace Rcpp ;
using namespace arma;
using namespace std;
// [[Rcpp::export]]
double chooseC(double n, double k) {
return Rf_choose(n, k);
}
// [[Rcpp::export]]
double function3(double n, double m, double beta) {
double prob;
NumericVector k(m);
NumericVector k_vec(m);
if(n<m){prob=0;}
else{
if(chooseC(n,m)==R_PosInf){
k=seq_len(m)-1;
k_vec= (n-k)/(m-k)*std::pow((1-beta),(n-m)/m)*beta;
prob=std::accumulate(k_vec.begin(),k_vec.end(), 1, std::multiplies<double>())*beta;
}
else{
prob = beta * chooseC(n,m) * std::pow(beta,m) * std::pow((1-beta),(n-m));
}
}
return(prob);
}
R代码如下:
function4 <- function ( n , m , beta )
{
if ( n < m )
{
prob <- 0.0
}
else
{
if (is.infinite(choose(n,m))){
k<-0:(m-1)
prob <- beta *prod((n-k)/(m-k)*(1-beta)^((n-m)/m)*beta)
}
else{
prob <- beta * choose(n,m) * beta^m * (1-beta)^(n-m)
}
}
prob
}
比较:
input<-619
beta<-0.09187495
x<-seq(0, (input+1)/beta*3)
yy<-sapply(x,function(n)function3(n,input, beta=beta))
yy2<-sapply(x,function(n)function4(n,input, beta=beta))
sum(yy)=0
sum(yy2)=1
然而,与其他输入:
input<-1
beta<-0.08214248
两个结果相同,sum(yy)=sum(yy2)=0.9865887
。
我在Rcpp代码中使用了double
,不知道还有什么会导致Rcpp和R代码精度不一致
非常感谢!
我想我修复了 Rcpp 代码,所以现在当结果非常小时,Rcpp 和 R 代码会产生相同的结果。解决方法如下图:
#include <RcppArmadillo.h>
#include <RcppArmadilloExtensions/sample.h>
#include <Rmath.h>
#include <Rcpp.h>
// [[Rcpp::depends(RcppArmadillo)]]
using namespace Rcpp ;
using namespace arma;
using namespace std;
// [[Rcpp::export]]
double chooseC(double n, double k) {
return Rf_choose(n, k);
}
// [[Rcpp::export]]
double function3(double n, double m, double beta) {
double prob;
arma::vec k = arma::linspace<vec>(0, m-1, m);
arma::vec k_vec;
if(n<m){prob=0;}
else{
if(chooseC(n,m)==R_PosInf){
k_vec= (n-k)/(m-k)*pow((1-beta),(n-m)/m)*beta;
prob=arma::prod(k_vec)*beta;
}
else{
prob = beta * chooseC(n,m) * pow(beta,m) * pow((1-beta),(n-m));
}
}
return(prob);
}
但是我还是不明白为什么这样写代码会修复精度不一致的问题。 Rcpp
和 RcppArmadillo
对我来说仍然像黑盒子。