Numpy 通过两个掩码过滤二维数组

Numpy filter 2D array by two masks

我有一个二维数组和两个掩码,一个用于列,一个用于行。如果我尝试简单地执行 data[row_mask,col_mask],我会收到一条错误消息 shape mismatch: indexing arrays could not be broadcast together with shapes ...。另一方面,data[row_mask][:,col_mask] 有效,但不那么漂亮。为什么它期望索引数组具有相同的形状?

这是一个具体的例子:

import numpy as np
data = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
row_mask = np.array([True, True, False, True])
col_mask = np.array([True, True, False])
print(data[row_mask][:,col_mask]) # works
print(data[row_mask,col_mask]) # error

使用ix_函数:

>>> data[np.ix_(row_mask,col_mask)]
array([[ 1,  2],
       [ 4,  5],
       [10, 11]])

Combining multiple Boolean indexing arrays or a Boolean with an integer indexing array can best be understood with the obj.nonzero() analogy. The function ix_ also supports boolean arrays and will work without any surprises.