带有点颜色的散点图表示 seaborn FacetGrid 中的连续变量

Scatterplot with point colors representing a continuous variable in seaborn FacetGrid

我正在尝试在 python 中使用 seaborn 生成 multi-panel 图,我希望 multi-panel 图中的点的颜色由连续变量指定。这是我尝试使用 "iris" 数据集进行操作的示例:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
iris = sns.load_dataset('iris')

g = sns.FacetGrid(iris, col = 'species', hue = 'petal_length', palette = 'seismic')
g = g.map(plt.scatter, 'sepal_length', 'sepal_width', s = 100, alpha = 0.5)
g.add_legend()

这样就形成了下图:

很好,但是图例太长了。我想抽取这些值的 1/4(理想情况下)或禁止显示颜色条。 例如,这样的事情可能是可以接受的,但我还是想把它分成三个物种。

plt.scatter(iris.sepal_length, iris.sepal_width, alpha = .8, c = iris.petal_length, cmap = 'seismic')
cbar = plt.colorbar()

知道如何充分利用这两个地块吗?

编辑: 这个话题似乎是一个好的开始。

https://github.com/mwaskom/seaborn/issues/582

不知何故,对于这个用户来说,简单地在其他所有内容之后附加 plt.colorbar 运行 似乎以某种方式起作用。不过在这种情况下似乎没有帮助。

FacetGrid hue 是绝对的,不是连续的。在 FacetGrid 中获得散点图的连续颜色图需要一些工作(与链接 Github 问题中的 imshow 不同,matplotlib 不保留对 "currently active scatterplot mapper" 这样对 plt.colorbar 的魔法调用就不会选取应用于点颜色的映射。

g = sns.FacetGrid(iris, col='species', palette = 'seismic')

def facet_scatter(x, y, c, **kwargs):
    """Draw scatterplot with point colors from a faceted DataFrame columns."""
    kwargs.pop("color")
    plt.scatter(x, y, c=c, **kwargs)

vmin, vmax = 0, 7
cmap = sns.diverging_palette(240, 10, l=65, center="dark", as_cmap=True)

g = g.map(facet_scatter, 'sepal_length', 'sepal_width', "petal_length",
          s=100, alpha=0.5, vmin=vmin, vmax=vmax, cmap=cmap)

# Make space for the colorbar
g.fig.subplots_adjust(right=.92)

# Define a new Axes where the colorbar will go
cax = g.fig.add_axes([.94, .25, .02, .6])

# Get a mappable object with the same colormap as the data
points = plt.scatter([], [], c=[], vmin=vmin, vmax=vmax, cmap=cmap)

# Draw the colorbar
g.fig.colorbar(points, cax=cax)

既然你问的是散点的图例,那么可以调整@mwaskom 的解决方案来生成一个带有散点的图例,如下所示:

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
iris = sns.load_dataset('iris')

g = sns.FacetGrid(iris, col='species', palette = 'seismic')

def facet_scatter(x, y, c, **kwargs):
    kwargs.pop("color")
    plt.scatter(x, y, c=c, **kwargs)

vmin, vmax = 0, 7
cmap = plt.cm.viridis

norm=plt.Normalize(vmin=vmin, vmax=vmax)

g = g.map(facet_scatter, 'sepal_length', 'sepal_width', "petal_length",
          s=100, alpha=0.5, norm=norm, cmap=cmap)

# Make space for the colorbar
g.fig.subplots_adjust(right=.9)

lp = lambda i: plt.plot([], color=cmap(norm(i)), marker="o", ls="", ms=10, alpha=0.5)[0]
labels = np.arange(0,7.5,0.5)
h = [lp(i) for i in labels]
g.fig.legend(handles=h, labels=labels, fontsize=9)

plt.show()