如何根据基于 Pyspark 中另一列的表达式评估有条件地替换列中的值?
How to conditionally replace value in a column based on evaluation of expression based on another column in Pyspark?
import numpy as np
df = spark.createDataFrame(
[(1, 1, None),
(1, 2, float(5)),
(1, 3, np.nan),
(1, 4, None),
(0, 5, float(10)),
(1, 6, float('nan')),
(0, 6, float('nan'))],
('session', "timestamp1", "id2"))
+-------+----------+----+
|session|timestamp1| id2|
+-------+----------+----+
| 1| 1|null|
| 1| 2| 5.0|
| 1| 3| NaN|
| 1| 4|null|
| 0| 5|10.0|
| 1| 6| NaN|
| 0| 6| NaN|
+-------+----------+----+
当session==0时如何用值999替换timestamp1列的值?
预期输出
+-------+----------+----+
|session|timestamp1| id2|
+-------+----------+----+
| 1| 1|null|
| 1| 2| 5.0|
| 1| 3| NaN|
| 1| 4|null|
| 0| 999|10.0|
| 1| 6| NaN|
| 0| 999| NaN|
+-------+----------+----+
是否可以在 PySpark 中使用 replace() 来实现?
您应该使用 when
(带有 otherwise
)函数:
from pyspark.sql.functions import when
targetDf = df.withColumn("timestamp1", \
when(df["session"] == 0, 999).otherwise(df["timestamp1"]))
import numpy as np
df = spark.createDataFrame(
[(1, 1, None),
(1, 2, float(5)),
(1, 3, np.nan),
(1, 4, None),
(0, 5, float(10)),
(1, 6, float('nan')),
(0, 6, float('nan'))],
('session', "timestamp1", "id2"))
+-------+----------+----+
|session|timestamp1| id2|
+-------+----------+----+
| 1| 1|null|
| 1| 2| 5.0|
| 1| 3| NaN|
| 1| 4|null|
| 0| 5|10.0|
| 1| 6| NaN|
| 0| 6| NaN|
+-------+----------+----+
当session==0时如何用值999替换timestamp1列的值?
预期输出
+-------+----------+----+
|session|timestamp1| id2|
+-------+----------+----+
| 1| 1|null|
| 1| 2| 5.0|
| 1| 3| NaN|
| 1| 4|null|
| 0| 999|10.0|
| 1| 6| NaN|
| 0| 999| NaN|
+-------+----------+----+
是否可以在 PySpark 中使用 replace() 来实现?
您应该使用 when
(带有 otherwise
)函数:
from pyspark.sql.functions import when
targetDf = df.withColumn("timestamp1", \
when(df["session"] == 0, 999).otherwise(df["timestamp1"]))