如何使用 python 定位和读取 Data Matrix 代码

How to locate and read Data Matrix code with python

我正在尝试读取微管底部的数据矩阵条形码。我尝试了 libdmtx,它具有 python 绑定,当矩阵的点是正方形时效果相当好,但当它们是圆形时效果更差,如下所示:

另一种复杂情况是在某些情况下会到达代码区域。

条形码在平板扫描仪的架子上扫描,因此它们具有恒定的大小并且大致居中。方向是随机的。

我得出结论,我必须自己找到代码并改进图像。我使用 python 和 OpenCV 3.1。我已经尝试过阈值化,轮廓:

import matplotlib.pyplot as plt
import numpy as np
import cv2

well = plt.imread('https://i.stack.imgur.com/kqHkw.png')
well = cv2.cvtColor(well, cv2.COLOR_BGRA2GRAY)
plt.subplot(151); plt.imshow(well)

x, thr = cv2.threshold(well, .4[enter image description here][2], 1, cv2.THRESH_BINARY)
thr = np.uint8(thr)
plt.subplot(152); plt.imshow(thr)

dst, contours, hierarchy = cv2.findContours(thr.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
c = cv2.drawContours(np.zeros_like(thr), contours, -1, 255, 1)
plt.subplot(153); plt.imshow(c)

areas = map(lambda x: cv2.contourArea(cv2.convexHull(x)), contours)
max_i = areas.index(max(areas))
d = cv2.drawContours(np.zeros_like(thr), contours, max_i, 255, 1)
plt.subplot(154); plt.imshow(d)

rect = cv2.minAreaRect(contours[max_i])
box = cv2.boxPoints(rect)
box = np.int0(box)
e = cv2.drawContours(np.zeros_like(thr),[box],0,255,1)
plt.subplot(155); plt.imshow(e)

plt.show()

result

事实证明,Harris 角点检测器 (B) 通过适当的设置可以很好地找到圆形元素。

在阈值处理 (C) 之后,我们检测结果区域的轮廓。我们 select 最大轮廓 (D) 并找到最小边界框 (E)。

import matplotlib.pyplot as plt
import numpy as np
import cv2

well = plt.imread('https://i.stack.imgur.com/kqHkw.png')
well = cv2.cvtColor(well, cv2.COLOR_BGRA2GRAY)
plt.subplot(151); plt.title('A')
plt.imshow(well)

harris = cv2.cornerHarris(well,4, 1,0.00)
plt.subplot(152); plt.title('B')
plt.imshow(harris)

x, thr = cv2.threshold(harris, 0.1 * harris.max(), 255, cv2.THRESH_BINARY)
thr = thr.astype('uint8')
plt.subplot(153); plt.title('C')
plt.imshow(thr)

dst, contours, hierarchy = cv2.findContours(thr.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
areas = map(lambda x: cv2.contourArea(cv2.convexHull(x)), contours)
max_i = areas.index(max(areas))
d = cv2.drawContours(np.zeros_like(thr), contours, max_i, 255, 1)
plt.subplot(154); plt.title('D')
plt.imshow(d)

rect =cv2.minAreaRect(contours[max_i])
box = cv2.boxPoints(rect)
box = np.int0(box)
e= cv2.drawContours(well,[box],0,1,1)
plt.subplot(155); plt.title('E')
plt.imshow(e)

plt.show()

为了 python 3 兼容性,您需要将上面的代码修改为:

contours, hierarchy = cv2.findContours(thr.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) 
areas = map(lambda x: cv2.contourArea(cv2.convexHull(x)), contours)  
areas = list(areas)  
max_i = areas.index(max(areas))