用一系列非数字对象中最接近的值替换 NaN?
Replace NaN with nearest value in a series of non-numeric object?
我正在使用 Pandas 和 Numpy,我正在尝试替换系列中的所有 NaN 值,如下所示:
date a
2017-04-24 01:00:00 [1,0,0]
2017-04-24 01:20:00 [1,0,0]
2017-04-24 01:40:00 NaN
2017-04-24 02:00:00 NaN
2017-04-24 02:20:00 [0,1,0]
2017-04-24 02:40:00 [1,0,0]
2017-04-24 03:00:00 NaN
2017-04-24 03:20:00 [0,0,1]
2017-04-24 03:40:00 NaN
2017-04-24 04:00:00 [1,0,0]
与最近的对象(在本例中为 Numpy 数组)。结果是:
date a
2017-04-24 01:00:00 [1,0,0]
2017-04-24 01:20:00 [1,0,0]
2017-04-24 01:40:00 [1,0,0]
2017-04-24 02:00:00 [0,1,0]
2017-04-24 02:20:00 [0,1,0]
2017-04-24 02:40:00 [1,0,0]
2017-04-24 03:00:00 [1,0,0]
2017-04-24 03:20:00 [0,0,1]
2017-04-24 03:40:00 [0,0,1]
2017-04-24 04:00:00 [1,0,0]
有人知道有效的方法吗?非常感谢。
删除空值然后用 reindex
填充
df.set_index('date').a.dropna().reindex(df.date, method='nearest').reset_index()
date a
0 2017-04-24 01:00:00 [1, 0, 0]
1 2017-04-24 01:20:00 [1, 0, 0]
2 2017-04-24 01:40:00 [1, 0, 0]
3 2017-04-24 02:00:00 [0, 1, 0]
4 2017-04-24 02:20:00 [0, 1, 0]
5 2017-04-24 02:40:00 [1, 0, 0]
6 2017-04-24 03:00:00 [0, 0, 1]
7 2017-04-24 03:20:00 [0, 0, 1]
8 2017-04-24 03:40:00 [1, 0, 0]
9 2017-04-24 04:00:00 [1, 0, 0]
我正在使用 Pandas 和 Numpy,我正在尝试替换系列中的所有 NaN 值,如下所示:
date a
2017-04-24 01:00:00 [1,0,0]
2017-04-24 01:20:00 [1,0,0]
2017-04-24 01:40:00 NaN
2017-04-24 02:00:00 NaN
2017-04-24 02:20:00 [0,1,0]
2017-04-24 02:40:00 [1,0,0]
2017-04-24 03:00:00 NaN
2017-04-24 03:20:00 [0,0,1]
2017-04-24 03:40:00 NaN
2017-04-24 04:00:00 [1,0,0]
与最近的对象(在本例中为 Numpy 数组)。结果是:
date a
2017-04-24 01:00:00 [1,0,0]
2017-04-24 01:20:00 [1,0,0]
2017-04-24 01:40:00 [1,0,0]
2017-04-24 02:00:00 [0,1,0]
2017-04-24 02:20:00 [0,1,0]
2017-04-24 02:40:00 [1,0,0]
2017-04-24 03:00:00 [1,0,0]
2017-04-24 03:20:00 [0,0,1]
2017-04-24 03:40:00 [0,0,1]
2017-04-24 04:00:00 [1,0,0]
有人知道有效的方法吗?非常感谢。
删除空值然后用 reindex
df.set_index('date').a.dropna().reindex(df.date, method='nearest').reset_index()
date a
0 2017-04-24 01:00:00 [1, 0, 0]
1 2017-04-24 01:20:00 [1, 0, 0]
2 2017-04-24 01:40:00 [1, 0, 0]
3 2017-04-24 02:00:00 [0, 1, 0]
4 2017-04-24 02:20:00 [0, 1, 0]
5 2017-04-24 02:40:00 [1, 0, 0]
6 2017-04-24 03:00:00 [0, 0, 1]
7 2017-04-24 03:20:00 [0, 0, 1]
8 2017-04-24 03:40:00 [1, 0, 0]
9 2017-04-24 04:00:00 [1, 0, 0]