Python Pandas -- 用前一列的值向前填充整行
Python Pandas -- Forward filling entire rows with value of one previous column
pandas 开发新手。如何使用先前看到的一列中包含的值转发填充 DataFrame?
独立示例:
import pandas as pd
import numpy as np
O = [1, np.nan, 5, np.nan]
H = [5, np.nan, 5, np.nan]
L = [1, np.nan, 2, np.nan]
C = [5, np.nan, 2, np.nan]
timestamps = ["2017-07-23 03:13:00", "2017-07-23 03:14:00", "2017-07-23 03:15:00", "2017-07-23 03:16:00"]
dict = {'Open': O, 'High': H, 'Low': L, 'Close': C}
df = pd.DataFrame(index=timestamps, data=dict)
ohlc = df[['Open', 'High', 'Low', 'Close']]
这会产生以下 DataFrame:
print(ohlc)
Open High Low Close
2017-07-23 03:13:00 1.0 5.0 1.0 5.0
2017-07-23 03:14:00 NaN NaN NaN NaN
2017-07-23 03:15:00 5.0 5.0 2.0 2.0
2017-07-23 03:16:00 NaN NaN NaN NaN
我想从最后一个 DataFrame 变成这样:
Open High Low Close
2017-07-23 03:13:00 1.0 5.0 1.0 5.0
2017-07-23 03:14:00 5.0 5.0 5.0 5.0
2017-07-23 03:15:00 5.0 5.0 2.0 2.0
2017-07-23 03:16:00 2.0 2.0 2.0 2.0
因此 'Close' 中先前看到的值向前填充整行,直到看到一个新的填充行。像这样填充列 'Close' 很简单:
column2fill = 'Close'
ohlc[column2fill] = ohlc[column2fill].ffill()
print(ohlc)
Open High Low Close
2017-07-23 03:13:00 1.0 5.0 1.0 5.0
2017-07-23 03:14:00 NaN NaN NaN 5.0
2017-07-23 03:15:00 5.0 5.0 2.0 2.0
2017-07-23 03:16:00 NaN NaN NaN 2.0
但是有没有办法用这些行的 'Close' 值填充 03:14:00 和 03:16:00 行?有没有一种方法可以使用一个正向填充一步完成,而不是先填充 'Close' 列?
看来您需要 assign
和 ffill
,然后 bfill
每行 axis=1
,但需要完整的 NaN
行:
df = ohlc.assign(Close=ohlc['Close'].ffill()).bfill(axis=1)
print (df)
Open High Low Close
2017-07-23 03:13:00 1.0 5.0 1.0 5.0
2017-07-23 03:14:00 5.0 5.0 5.0 5.0
2017-07-23 03:15:00 5.0 5.0 2.0 2.0
2017-07-23 03:16:00 2.0 2.0 2.0 2.0
什么相同:
ohlc['Close'] = ohlc['Close'].ffill()
df = ohlc.bfill(axis=1)
print (df)
Open High Low Close
2017-07-23 03:13:00 1.0 5.0 1.0 5.0
2017-07-23 03:14:00 5.0 5.0 5.0 5.0
2017-07-23 03:15:00 5.0 5.0 2.0 2.0
2017-07-23 03:16:00 2.0 2.0 2.0 2.0
pandas 开发新手。如何使用先前看到的一列中包含的值转发填充 DataFrame?
独立示例:
import pandas as pd
import numpy as np
O = [1, np.nan, 5, np.nan]
H = [5, np.nan, 5, np.nan]
L = [1, np.nan, 2, np.nan]
C = [5, np.nan, 2, np.nan]
timestamps = ["2017-07-23 03:13:00", "2017-07-23 03:14:00", "2017-07-23 03:15:00", "2017-07-23 03:16:00"]
dict = {'Open': O, 'High': H, 'Low': L, 'Close': C}
df = pd.DataFrame(index=timestamps, data=dict)
ohlc = df[['Open', 'High', 'Low', 'Close']]
这会产生以下 DataFrame:
print(ohlc)
Open High Low Close
2017-07-23 03:13:00 1.0 5.0 1.0 5.0
2017-07-23 03:14:00 NaN NaN NaN NaN
2017-07-23 03:15:00 5.0 5.0 2.0 2.0
2017-07-23 03:16:00 NaN NaN NaN NaN
我想从最后一个 DataFrame 变成这样:
Open High Low Close
2017-07-23 03:13:00 1.0 5.0 1.0 5.0
2017-07-23 03:14:00 5.0 5.0 5.0 5.0
2017-07-23 03:15:00 5.0 5.0 2.0 2.0
2017-07-23 03:16:00 2.0 2.0 2.0 2.0
因此 'Close' 中先前看到的值向前填充整行,直到看到一个新的填充行。像这样填充列 'Close' 很简单:
column2fill = 'Close'
ohlc[column2fill] = ohlc[column2fill].ffill()
print(ohlc)
Open High Low Close
2017-07-23 03:13:00 1.0 5.0 1.0 5.0
2017-07-23 03:14:00 NaN NaN NaN 5.0
2017-07-23 03:15:00 5.0 5.0 2.0 2.0
2017-07-23 03:16:00 NaN NaN NaN 2.0
但是有没有办法用这些行的 'Close' 值填充 03:14:00 和 03:16:00 行?有没有一种方法可以使用一个正向填充一步完成,而不是先填充 'Close' 列?
看来您需要 assign
和 ffill
,然后 bfill
每行 axis=1
,但需要完整的 NaN
行:
df = ohlc.assign(Close=ohlc['Close'].ffill()).bfill(axis=1)
print (df)
Open High Low Close
2017-07-23 03:13:00 1.0 5.0 1.0 5.0
2017-07-23 03:14:00 5.0 5.0 5.0 5.0
2017-07-23 03:15:00 5.0 5.0 2.0 2.0
2017-07-23 03:16:00 2.0 2.0 2.0 2.0
什么相同:
ohlc['Close'] = ohlc['Close'].ffill()
df = ohlc.bfill(axis=1)
print (df)
Open High Low Close
2017-07-23 03:13:00 1.0 5.0 1.0 5.0
2017-07-23 03:14:00 5.0 5.0 5.0 5.0
2017-07-23 03:15:00 5.0 5.0 2.0 2.0
2017-07-23 03:16:00 2.0 2.0 2.0 2.0