NetworkX 通过平均并行长度将 MultiGraph 转换为简单图
NetworkX convert MultiGraph to simple Graph by averaging parallel length
使用 Maehler 的代码将 MultiGraph 转换为 Simple Graph 有一种解决方案
import networkx as nx
G = nx.MultiGraph()
G.add_nodes_from([1,2,3])
G.add_edges_from([(1, 2), (1, 2), (1, 3), (2, 3), (2, 3)])
G2 = nx.Graph(G)
另一个使用 Aslak 和 Aric 的代码通过求和权重
import networkx as nx
# weighted MultiGraph
M = nx.MultiGraph()
M.add_edge(1,2,weight=7)
M.add_edge(1,2,weight=19)
M.add_edge(2,3,weight=42)
# create weighted graph from M
G = nx.Graph()
for u,v,data in M.edges_iter(data=True):
w = data['weight'] if 'weight' in data else 1.0
if G.has_edge(u,v):
G[u][v]['weight'] += w
else:
G.add_edge(u, v, weight=w)
print G.edges(data=True)
# [(1, 2, {'weight': 26}), (2, 3, {'weight': 42})]
想知道如何平均平行边的权重?
这是一种类似于使用统计包计算边权重平均值的方法。
import networkx as nx
from statistics import mean
# weighted MultiGraph
M = nx.MultiGraph()
M.add_edge(1,2,weight=7)
M.add_edge(1,2,weight=20)
M.add_edge(2,3,weight=42)
M.add_edge(2,3)
# create weighted graph G from M
G = nx.Graph()
for u,v,data in M.edges(data=True):
if not G.has_edge(u,v):
# set weight to 1 if no weight is given for edge in M
weight = mean(d.get('weight',1) for d in M.get_edge_data(u,v).values())
G.add_edge(u, v, weight=weight)
print(G.edges(data=True))
输出(networkx-2.0-dev)
EdgeView([(1, 2, {'weight': 13.5}), (2, 3, {'weight': 21.5})])
使用 Maehler 的代码将 MultiGraph 转换为 Simple Graph 有一种解决方案
import networkx as nx
G = nx.MultiGraph()
G.add_nodes_from([1,2,3])
G.add_edges_from([(1, 2), (1, 2), (1, 3), (2, 3), (2, 3)])
G2 = nx.Graph(G)
另一个使用 Aslak 和 Aric 的代码通过求和权重
import networkx as nx
# weighted MultiGraph
M = nx.MultiGraph()
M.add_edge(1,2,weight=7)
M.add_edge(1,2,weight=19)
M.add_edge(2,3,weight=42)
# create weighted graph from M
G = nx.Graph()
for u,v,data in M.edges_iter(data=True):
w = data['weight'] if 'weight' in data else 1.0
if G.has_edge(u,v):
G[u][v]['weight'] += w
else:
G.add_edge(u, v, weight=w)
print G.edges(data=True)
# [(1, 2, {'weight': 26}), (2, 3, {'weight': 42})]
想知道如何平均平行边的权重?
这是一种类似于使用统计包计算边权重平均值的方法。
import networkx as nx
from statistics import mean
# weighted MultiGraph
M = nx.MultiGraph()
M.add_edge(1,2,weight=7)
M.add_edge(1,2,weight=20)
M.add_edge(2,3,weight=42)
M.add_edge(2,3)
# create weighted graph G from M
G = nx.Graph()
for u,v,data in M.edges(data=True):
if not G.has_edge(u,v):
# set weight to 1 if no weight is given for edge in M
weight = mean(d.get('weight',1) for d in M.get_edge_data(u,v).values())
G.add_edge(u, v, weight=weight)
print(G.edges(data=True))
输出(networkx-2.0-dev)
EdgeView([(1, 2, {'weight': 13.5}), (2, 3, {'weight': 21.5})])