使用 Seaborn 安排多个 for 循环分类图
Arranging multiple for loop categorical plots with Seaborn
我正在使用 for 循环为数据框 df 创建多个分类图:
object_bol = df.dtypes == 'object'
for catplot in df.dtypes[object_bol].index:
sns.countplot(y=catplot,data=df)
plt.show()
输出是一个接一个排列的所有图,我如何将其分配给具有 n 列和 m 行的网格(n 和 m 因数据框中的对象数量而异)?
您可能希望将示例从 扩展到更多子图。
import numpy as np
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
df=pd.DataFrame(np.random.choice(list("abcd"), size=(100,20), p=[.4,.3,.2,.1]))
fig, axes =plt.subplots(5,4, figsize=(10,10), sharex=True)
axes = axes.flatten()
object_bol = df.dtypes == 'object'
for ax, catplot in zip(axes, df.dtypes[object_bol].index):
sns.countplot(y=catplot, data=df, ax=ax, order=np.unique(df.values))
plt.tight_layout()
plt.show()
如果没有 seaborn,你会直接从 pandas 得到类似的东西:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df=pd.DataFrame(np.random.choice(list("abcd"), size=(100,20), p=[.4,.3,.2,.1]))
df.apply(pd.value_counts).plot(kind="barh", subplots=True, layout=(4,5), legend=False)
plt.tight_layout()
plt.show()
我正在使用 for 循环为数据框 df 创建多个分类图:
object_bol = df.dtypes == 'object'
for catplot in df.dtypes[object_bol].index:
sns.countplot(y=catplot,data=df)
plt.show()
输出是一个接一个排列的所有图,我如何将其分配给具有 n 列和 m 行的网格(n 和 m 因数据框中的对象数量而异)?
您可能希望将示例从
import numpy as np
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
df=pd.DataFrame(np.random.choice(list("abcd"), size=(100,20), p=[.4,.3,.2,.1]))
fig, axes =plt.subplots(5,4, figsize=(10,10), sharex=True)
axes = axes.flatten()
object_bol = df.dtypes == 'object'
for ax, catplot in zip(axes, df.dtypes[object_bol].index):
sns.countplot(y=catplot, data=df, ax=ax, order=np.unique(df.values))
plt.tight_layout()
plt.show()
如果没有 seaborn,你会直接从 pandas 得到类似的东西:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df=pd.DataFrame(np.random.choice(list("abcd"), size=(100,20), p=[.4,.3,.2,.1]))
df.apply(pd.value_counts).plot(kind="barh", subplots=True, layout=(4,5), legend=False)
plt.tight_layout()
plt.show()