Python:比较 2 个 CSV 文件的差异 1 列值和第 3 个 csv 文件中的输出

Python: Comparing 2 CSV files for Difference 1 column value and output in 3rd csv file

我有 2 个 CSV 文件,它们的列数和格式相同,每行包含有关服务器的详细信息。每个文件指的是不同的一天。

我想将 Day2 CSV file 列(D 列)的每个服务器(行)与 Day1 CSV file 列的每个服务器进行比较Size (GB) 列(D 列),并将输出写入 day2 CSV filecolumn E 或单独的第三个 CSV 文件以跟踪 difference/growth 的大小每天。

我正努力在 Python 中实现它。

接下来我举个例子:

day1.csv

Server  Site      Platform  Size(GB)
a       Primary   Windows   100 
b      Secondary Unix       200 
c       Primary   Oracle    500

day2.csv

Server  Site      Platform  Size(GB)
a       Primary   Windows   150
b       Secondary Unix      100
c       Primary   Oracle    500

预期结果 output.csv

Server  Site      Platform  Size(GB) Growth(GB)
a       Primary   Windows   150      50
b       Secondary Unix      100      -100
c       Primary   Oracle    500      0

编辑 1:

这是我目前开发的代码:

import csv 
t1 = open('/day1.csv', 'r') 
t2 = open('/day2.csv', 'r') 
outputt=open("/growth.csv","w") 
fileone = t1.readlines() 
filetwo = t2.readlines() 

for line in filetwo: 
    row = row.split(',') 
    a = str(row[0]) 
    b = str(row[1]) 
    c = str(row[2]) 
    d = float(row[3]) 
    f = float(filetwo.row[3] - fileone.row[3])
    outputt.writerow([a,b,c,d,e,f]) 
    outputt.write(line.replace("\n","") + ";6column\n") outputt.close() 
    fileone.close()

这可以使用 Python 的 CSV 库和 OrderedDict 来维护原始文件顺序:

from collections import OrderedDict
import csv

with open('day1.csv', 'rb') as f_day1, open('day2.csv', 'rb') as f_day2:
    csv_day1 = csv.reader(f_day1)
    csv_day2 = csv.reader(f_day2)

    header = next(csv_day1) + ['Growth(GB)']
    next(csv_day2)

    day1 = OrderedDict([row[0], [row[1], row[2], int(row[3])]] for row in csv_day1)
    day2 = OrderedDict([row[0], [row[1], row[2], int(row[3])]] for row in csv_day2)

with open('output.csv', 'wb') as f_output:
    csv_output = csv.writer(f_output)
    csv_output.writerow(header)

    for server, data in day1.items():
        data.append(day2[server][2] - data[2])
        data[2] = day2[server][2]
        csv_output.writerow([server] + data)

给你一个输出CSV文件如下:

Server,Site,Platform,Size(GB),Growth(GB)
a,Primary,Windows,150,50
b,Secondary,Unix,100,-100
c,Primary,Oracle,500,0

注意:使用with时文件会自动关闭。

在 Python 2.7.12

上测试

这不是一个非常通用的解决方案,但我尽可能地尝试遵循您的方法:

import csv

# Open read files
file1 = open('day1.csv', 'r')
file2 = open('day2.csv', 'r')

# Open output file
outputFile = open ('day3.csv', 'w')
csvWriter = csv.writer(outputFile, delimiter=',')
# Write the output file header
csvWriter.writerow(["Server", "Site", "Platform", "Size", "Growth"])

# Process input files
csvReader1 = csv.reader(file1, delimiter=',')
csvReader2 = csv.reader(file2, delimiter=',')

# Skip headers
csvReader1.next()
csvReader2.next()

# Process data
for rowF2 in csvReader2:
    # Get the content of each line in F1
    rowF1 = csvReader1.next()

    # Uncomment for debug
    #print rowF1
    #print rowF2

    # Construct output line from F2 values
    colA = str(rowF2[0])
    colB = str(rowF2[1])
    colC = str(rowF2[2])
    # Compute the growth
    colD = str(int(rowF2[3]) - int(rowF1[3]))

    # Write the output file
    csvWriter.writerow([colA, colB, colC, colD])                                                                                     

file1.close()
file2.close()
outputFile.close()

在我看来,最大的担忧在于:

  • 您需要使用 CSV 库(csv reader 和 writer)
  • 需要时您需要跳过 headers
  • 您需要在执行结束时关闭所有文件
# Show True/False against column containing NaN(Mached data)
print(difference.isnull().any())

# Count of NaN(Mached data) in each column
print(difference.isnull().sum())

# Count of Mismatched Data in each column
print(difference.count())

# Difference in records from 2 csv loaded in dataframe df
df = difference.dropna(axis=0,how='all') 

# OutputFile to be saved as 'output_file'.
df.to_csv(output_file)