为什么我的 lubridate 日期函数这么慢?

Why are my functions on lubridate dates so slow?

我写了这个我一直在用的函数:

# Give the previous day, or Friday if the previous day is Saturday or Sunday.
previous_business_date_if_weekend = function(my_date) {
    if (length(my_date) == 1) {
        if (weekdays(my_date) == "Sunday") { my_date = lubridate::as_date(my_date) - 2 }
        if (weekdays(my_date) == "Saturday") { my_date = lubridate::as_date(my_date) - 1 }
        return(lubridate::as_date(my_date))
    } else if (length(my_date) > 1) {
        my_date = lubridate::as_date(sapply(my_date, previous_business_date_if_weekend))
        return(my_date)
    }
}

当我将它应用于具有数千行的数据框的日期列时出现问题。这太慢了。 有什么想法吗?

您正在遍历每一行。它很慢也就不足为奇了。您基本上可以执行一个替换操作,而不是从每个日期取固定差异:0 表示 M-F,-1 表示星期六,-2 表示星期日。

# 'big' sample data
x <- Sys.Date() + 0:100000

bizdays <- function(x) x - match(weekdays(x), c("Saturday","Sunday"), nomatch=0)

# since `weekdays()` is locale-specific, you could also be defensive and do:
bizdays <- function(x) x - match(format(x, "%w"), c("6","0"), nomatch=0)

system.time(bizdays(x))
#   user  system elapsed 
#   0.36    0.00    0.35 

system.time(previous_business_date_if_weekend(x))
#   user  system elapsed 
#  45.45    0.00   45.57 

identical(bizdays(x), previous_business_date_if_weekend(x))
#[1] TRUE

根据我的经验,Lubridate 有点慢。我建议使用 data.table 和 iDate。

像这样的东西应该非常健壮:

library(data.table)

#Make data.table of dates in string format
x = data.table(date = format(Sys.Date() + 0:100000,format='%d/%m/%Y'))

#Convert to IDate (by reference)
set(x, j = "date", value = as.IDate(strptime(x[,date], "%d/%m/%Y")))

#Day zero was a Thursday
originDate = as.IDate(strptime("01/01/1970", "%d/%m/%Y"))
as.integer(originDate)
#[1] 0
weekdays(originDate)
#[1] "Thursday"

previous_business_date_if_weekend_dt = function(x) {

  #Adjust dates so that Sat is 1, Sun is 2, and subtract by reference
  x[,adjustedDate := date]
  x[(as.integer(x[,date]-2) %% 7 + 1)<=2, adjustedDate := adjustedDate - (as.integer(date-2) %% 7 + 1)]

}

bizdays <- function(x) x - match(weekdays(x), c("Saturday","Sunday"), nomatch=0)

system.time(bizdays(y))
# user  system elapsed 
# 0.22    0.00    0.22 

system.time(previous_business_date_if_weekend_dt(x))
# user  system elapsed 
# 0       0       0 

另请注意,在此解决方案中花费最多时间的部分可能是从字符串中提取日期,如果您担心的话,可以将它们重新格式化为整数格式。

只是为了增加另一种可能性:纯 R 实现在 datetimetutils 包中(我是作者)。函数 previous_businessday 转换为 POSIXlt 以提取工作日。 (代码将函数的结果与 thelatemail 建议的函数 bizdays 进行比较。)

library("datetimeutils")

x <- Sys.Date() + 0:100000

system.time(bizdays(x))
## user  system elapsed 
## 0.25    0.00    0.25 

system.time(previous_businessday(x, shift = 0))
## user  system elapsed 
## 0.03    0.00    0.03 

identical(bizdays(x), previous_businessday(x, shift = 0))
## TRUE

previous_businessday 的略微简化版本如下所示;它假设 x 属于 class Date.

previous_bd <- function(x) {
    tmp <- as.POSIXlt(x)
    tmpi <- tmp$wday == 6L
    x[tmpi] <- x[tmpi] - 1L
    tmpi <- tmp$wday == 0L
    x[tmpi] <- x[tmpi] - 2L
    x
}

system.time(previous_bd(x))
## user  system elapsed 
## 0.03    0.00    0.03 


identical(bizdays(x), previous_bd(x))
## TRUE

OP 的问题 and some generalizing statements like 表明特定的软件包可能是性能低下的原因。

我想用一些基准来验证这一点。

使用双冒号运算符的惩罚 ::

使用双冒号运算符 :: 访问命名空间中导出的变量或函数会受到惩罚。

# creating data
n <- 10^1L
fmt <- "%F"
chr_dates <- format(Sys.Date() + seq_len(n), "%F")
    
# loading lubridate into namespace
library(lubridate) 
microbenchmark::microbenchmark(
  base1 = r1 <- as.Date(chr_dates),
  base2 = r2 <- base::as.Date(chr_dates),
  lubr1 = r3 <- as_date(chr_dates),
  lubr2 = r4 <- lubridate::as_date(chr_dates),
  times = 100L
)
Unit: microseconds
  expr     min       lq      mean  median       uq     max neval cld
 base1  87.977  89.1100  92.03587  89.865  90.9980 128.756   100 a  
 base2  94.018  95.7175 100.64848  97.039  99.3045 179.351   100  b 
 lubr1  92.508  94.2070  98.21307  95.151  97.7940 175.954   100  b 
 lubr2 101.569 103.0800 109.98974 104.024 107.9885 258.643   100   c

使用双冒号运算符 :: 的代价是大约 10 微秒。

这仅在函数被重复调用时才有意义(因为它发生在使用 sapply() 的 OP 代码中)。恕我直言,调试命名空间冲突或维护函数来源不明的代码的痛苦要高得多。当然,您的里程可能会有所不同。

可以验证 n = 100

的计时
Unit: microseconds
  expr     min       lq     mean   median       uq      max neval cld
 base1 556.933 561.0855 580.3382 562.9730 590.7250  812.176   100   a
 base2 564.483 568.2600 588.5695 570.9030 596.2010  989.262   100   a
 lubr1 562.596 565.9935 587.4443 568.4480 594.8790 1039.480   100   a
 lubr2 572.036 575.9995 597.1557 578.4545 601.1085 1230.159   100   a

将字符日期转换为 class 日期

有许多包处理将不同格式的字符日期转换为 class DatePOSIXct。其中一些以性能为目标,另一些以方便为目标。

这里比较了baselubridateanytimefasttimedata.table(因为其中一个回答里提到了) .

输入是标准明确格式的字符日期 YYYY-MM-DD。忽略时区。

fasttime 只接受 1970 到 2199 之间的日期,因此必须修改示例数据的创建以创建包含 10 万个日期的示例数据集。

n <- 10^5L
fmt <- "%F"
set.seed(123L)
chr_dates <- format(
  sample(
    seq(as.Date("1970-01-01"), as.Date("2199-12-31"), by = 1L), 
    n, replace = TRUE),
  "%F")

因为 猜测格式可能会增加惩罚,因此在可能的情况下使用或不使用给定格式调用函数。使用双冒号运算符 ::.

调用所有函数
microbenchmark::microbenchmark(
  base_ = r1 <- base::as.Date(chr_dates),
  basef = r1 <- base::as.Date(chr_dates, fmt),
  lub1_ = r2 <- lubridate::as_date(chr_dates),
  lub1f = r2 <- lubridate::as_date(chr_dates, fmt),
  lub2_ = r3 <- lubridate::ymd(chr_dates),
  anyt_ = r4 <- anytime::anydate(chr_dates),
  idat_ = r5 <- data.table::as.IDate(chr_dates),
  idatf = r5 <- data.table::as.IDate(chr_dates, fmt),
  fast_ = r6 <- fasttime::fastPOSIXct(chr_dates),
  fastd = r6 <- as.Date(fasttime::fastPOSIXct(chr_dates)),
  times = 5L
)
# check results
all.equal(r1, r2)
all.equal(r1, r3)
all.equal(r1, c(r4)) # remove tzone attribute
all.equal(r1, as.Date(r5)) # convert IDate to Date
all.equal(r1, as.Date(r6)) # convert POSIXct to Date
Unit: milliseconds
  expr        min         lq       mean     median         uq        max neval  cld
 base_ 641.799082 645.008517 648.128466 648.791875 649.149444 655.893411     5    d
 basef  69.377419  69.937371  73.888828  71.403139  76.022083  82.704127     5  b  
 lub1_ 644.199361 645.217696 680.542327 649.855896 652.887492 810.551189     5    d
 lub1f  69.769726  69.947943  70.944605  70.795234  71.365759  72.844364     5  b  
 lub2_  18.672495  27.025711  26.990218  28.180730  29.944409  31.127747     5 ab  
 anyt_ 381.870316 384.513758 386.211134 384.992152 385.159043 394.520400     5   c 
 idat_ 643.386808 644.312259 649.385356 648.204359 651.666396 659.356958     5    d
 idatf  69.844109  71.188673  75.319481  77.142365  78.156923  80.265334     5  b  
 fast_   4.994637   5.363533   5.748137   5.601031   5.760370   7.021112     5 a   
 fastd   5.230625   6.296157   6.686500   6.345998   6.538941   9.020780     5 a

时间显示

  • 弗兰克的怀疑是正确的。猜测格式是昂贵的。将格式作为参数传递给 as.Date()as_date()as.IDate() 比没有调用快十倍。
  • fasttime::fastPOSIXct() 确实是最快的。即使从 POSIXctDate 进行额外的转换,它也比第二快的 lubridate::ymd().
  • 快四倍