使用 Dplyr 和 Tidyverse 创建一个 Table,其中包含交替的总行,后跟子行
Create a Table with Alternating Total Rows Followed by Sub-Rows Using Dplyr and Tidyverse
library(dplyr)
library(forcats)
使用下面的简单数据框和代码,我想创建一个包含总行数和子行数的 table。例如,第一行将是来自 NEW 列的 "Region1" 和来自 TotNumber 列的 70,然后在其下方将是 "Town1"、"Town2" 和 "Town3" 的三行,以及它们在“数字”列中的相关数字,"Region2" 和 "Region3" 也是如此。我附上了一张想要的照片 table...
我也在寻找使用 dplyr 和 Tidyverse 的解决方案。
Number<-c(10,30,30,10,56,30,40,50,33,10)
Town<-("Town1","Town2","Town3","Town4","Town5","Town6","Town7","Town8","Town9","Town10")
DF<-data_frame(Town,Number)
DF<-DF%>%mutate_at(vars(Town),funs(as.factor))
要创建区域变量...
DF<-DF%>%mutate(NEW=fct_collapse(Town,
Region1=c("Town1","Town2","Town3"),
Region2=c("Town4","Town5","Town6"),
Region3=c("Town7","Town8","Town9","Town10")))%>%
group_by(NEW)%>%
summarise(TotNumber=sum(Number))
修改最后的管道并添加一些附加步骤:
library(dplyr)
library(forcats)
DF%>%mutate(NEW=fct_collapse(Town,
Region1=c("Town1","Town2","Town3"),
Region2=c("Town4","Town5","Town6"),
Region3=c("Town7","Town8","Town9","Town10")),
NEW = as.character(NEW)) %>%
group_by(NEW) %>%
mutate(TotNumber=sum(Number)) %>%
ungroup() %>%
split(.$NEW) %>%
lapply(function(x) rbind(setNames(x[1,3:4], names(x)[1:2]), x[1:2])) %>%
do.call(rbind, .)
结果:
# A tibble: 13 × 2
Town Number
* <chr> <dbl>
1 Region1 70
2 Town1 10
3 Town2 30
4 Town3 30
5 Region2 96
6 Town4 10
7 Town5 56
8 Town6 30
9 Region3 133
10 Town7 40
11 Town8 50
12 Town9 33
13 Town10 10
数据:
Number<-c(10,30,30,10,56,30,40,50,33,10)
Town<-c("Town1","Town2","Town3","Town4","Town5","Town6","Town7","Town8","Town9","Town10")
DF<-data_frame(Town,Number) %>%
mutate_at(vars(Town),funs(as.factor))
library(dplyr)
library(forcats)
使用下面的简单数据框和代码,我想创建一个包含总行数和子行数的 table。例如,第一行将是来自 NEW 列的 "Region1" 和来自 TotNumber 列的 70,然后在其下方将是 "Town1"、"Town2" 和 "Town3" 的三行,以及它们在“数字”列中的相关数字,"Region2" 和 "Region3" 也是如此。我附上了一张想要的照片 table...
我也在寻找使用 dplyr 和 Tidyverse 的解决方案。
Number<-c(10,30,30,10,56,30,40,50,33,10)
Town<-("Town1","Town2","Town3","Town4","Town5","Town6","Town7","Town8","Town9","Town10")
DF<-data_frame(Town,Number)
DF<-DF%>%mutate_at(vars(Town),funs(as.factor))
要创建区域变量...
DF<-DF%>%mutate(NEW=fct_collapse(Town,
Region1=c("Town1","Town2","Town3"),
Region2=c("Town4","Town5","Town6"),
Region3=c("Town7","Town8","Town9","Town10")))%>%
group_by(NEW)%>%
summarise(TotNumber=sum(Number))
修改最后的管道并添加一些附加步骤:
library(dplyr)
library(forcats)
DF%>%mutate(NEW=fct_collapse(Town,
Region1=c("Town1","Town2","Town3"),
Region2=c("Town4","Town5","Town6"),
Region3=c("Town7","Town8","Town9","Town10")),
NEW = as.character(NEW)) %>%
group_by(NEW) %>%
mutate(TotNumber=sum(Number)) %>%
ungroup() %>%
split(.$NEW) %>%
lapply(function(x) rbind(setNames(x[1,3:4], names(x)[1:2]), x[1:2])) %>%
do.call(rbind, .)
结果:
# A tibble: 13 × 2
Town Number
* <chr> <dbl>
1 Region1 70
2 Town1 10
3 Town2 30
4 Town3 30
5 Region2 96
6 Town4 10
7 Town5 56
8 Town6 30
9 Region3 133
10 Town7 40
11 Town8 50
12 Town9 33
13 Town10 10
数据:
Number<-c(10,30,30,10,56,30,40,50,33,10)
Town<-c("Town1","Town2","Town3","Town4","Town5","Town6","Town7","Town8","Town9","Town10")
DF<-data_frame(Town,Number) %>%
mutate_at(vars(Town),funs(as.factor))