Bigquery 中新安装用户的 Firebase 事件发生

Firebase Event Occurrences for New Installed Users in Bigquery

鉴于用户的安装日期,我想获取 Firebase (1) Event Occurrences 和 (2) Event Distinct Users' Count 对于我们在第 0 天到第 30 天的所有 200 多个 Firebase 事件。我在屏幕截图中模拟了下面(对于 D0-D30)的输出 table,但代码仅适用于 Day0-Day7。

(1) 事件发生

SELECT
  event.name as event_name,
  COUNT(CASE WHEN _TABLE_SUFFIX >= '20170801' AND _TABLE_SUFFIX < '20170802' THEN event_count END) AS D0_USERS,
  COUNT(CASE WHEN _TABLE_SUFFIX >= '20170802' AND _TABLE_SUFFIX < '20170803' THEN event_count END) AS D1_USERS,
  COUNT(CASE WHEN _TABLE_SUFFIX >= '20170803' AND _TABLE_SUFFIX < '20170804' THEN event_count END) AS D2_USERS,
  COUNT(CASE WHEN _TABLE_SUFFIX >= '20170804' AND _TABLE_SUFFIX < '20170805' THEN event_count END) AS D3_USERS,
  COUNT(CASE WHEN _TABLE_SUFFIX >= '20170805' AND _TABLE_SUFFIX < '20170806' THEN event_count END) AS D4_USERS,
  COUNT(CASE WHEN _TABLE_SUFFIX >= '20170806' AND _TABLE_SUFFIX < '20170807' THEN event_count END) AS D5_USERS,  
  COUNT(CASE WHEN _TABLE_SUFFIX >= '20170807' AND _TABLE_SUFFIX < '20170808' THEN event_count END) AS D6_USERS,  
  COUNT(CASE WHEN _TABLE_SUFFIX >= '20170808' AND _TABLE_SUFFIX < '20170809' THEN event_count END) AS D7_USERS    
FROM `<<project-id>>.app_events_*`, UNNEST(event_dim) AS event
WHERE
  _TABLE_SUFFIX >= '20170801' AND _TABLE_SUFFIX < '20170809' AND
  user_dim.first_open_timestamp_micros BETWEEN 1501545600000000 AND 1501632000000000;

(2) 事件独立用户计数

SELECT
  event.name as event_name,
  COUNT(DISTINCT CASE WHEN _TABLE_SUFFIX >= '20170801' AND _TABLE_SUFFIX < '20170802' THEN user_dim.app_info.app_instance_id END) AS D0_USERS,
  COUNT(DISTINCT CASE WHEN _TABLE_SUFFIX >= '20170802' AND _TABLE_SUFFIX < '20170803' THEN user_dim.app_info.app_instance_id END) AS D1_USERS,
  COUNT(DISTINCT CASE WHEN _TABLE_SUFFIX >= '20170803' AND _TABLE_SUFFIX < '20170804' THEN user_dim.app_info.app_instance_id END) AS D2_USERS,
  COUNT(DISTINCT CASE WHEN _TABLE_SUFFIX >= '20170804' AND _TABLE_SUFFIX < '20170805' THEN user_dim.app_info.app_instance_id END) AS D3_USERS,
  COUNT(DISTINCT CASE WHEN _TABLE_SUFFIX >= '20170805' AND _TABLE_SUFFIX < '20170806' THEN user_dim.app_info.app_instance_id END) AS D4_USERS,
  COUNT(DISTINCT CASE WHEN _TABLE_SUFFIX >= '20170806' AND _TABLE_SUFFIX < '20170807' THEN user_dim.app_info.app_instance_id END) AS D5_USERS,  
  COUNT(DISTINCT CASE WHEN _TABLE_SUFFIX >= '20170807' AND _TABLE_SUFFIX < '20170808' THEN user_dim.app_info.app_instance_id END) AS D6_USERS,  
  COUNT(DISTINCT CASE WHEN _TABLE_SUFFIX >= '20170808' AND _TABLE_SUFFIX < '20170809' THEN user_dim.app_info.app_instance_id END) AS D7_USERS    
FROM `<<project-id>>.app_events_*`, UNNEST(event_dim) AS event
WHERE
  _TABLE_SUFFIX >= '20170801' AND _TABLE_SUFFIX < '20170809'
  AND user_dim.first_open_timestamp_micros BETWEEN 1501545600000000 AND 1501632000000000
GROUP BY 1;

问题:

Mikhail 反馈后的最终答案:

我将两个查询组合在一个查询中,然后创建了一个数据透视表 table。请记住在执行前在 BigQuery 编辑器中 select "Standard SQL"。

SELECT
  event.name AS event_name,
  _TABLE_SUFFIX as day,
  COUNT(1) as event_occurances,
  COUNT(DISTINCT user_dim.app_info.app_instance_id) as event_unique_users
FROM `<<project-id>>.app_events_*`, UNNEST(event_dim) AS event
WHERE
  _TABLE_SUFFIX >= '20170801' AND _TABLE_SUFFIX < '20170901' AND
  user_dim.first_open_timestamp_micros BETWEEN 1501545600000000 AND 1501632000000000
GROUP BY event_name, day
ORDER BY event_name;

附录注释:

2017 年 8 月 1 日的时间戳转换

2017 年 8 月 2 日的时间戳转换

Is there a more optimised way to write this?

1。优化它的一种方法是在下面重写

COUNT(CASE WHEN _TABLE_SUFFIX >= '20170801' AND _TABLE_SUFFIX < '20170802' THEN event_count END) AS D0_USERS

到这个

COUNTIF(_TABLE_SUFFIX = '20170801') AS D0_USERS

:o( 对于 D0-D30 的情况,你仍然需要将这一行写 31 次,但至少它不那么重了

2。另一种(正确的)方法是遵循最佳实践并将数据检索与数据可视化分开

所以你可以像下面这样做来检索所需的数据

#standardSQL
SELECT
  event.name AS event_name,
  _TABLE_SUFFIX as day,
  COUNT(1) as users
FROM `<<project-id>>.app_events_*`, UNNEST(event_dim) AS event
WHERE
  _TABLE_SUFFIX >= '20170801' AND _TABLE_SUFFIX < '20170809' AND
  user_dim.first_open_timestamp_micros BETWEEN 1501545600000000 AND 1501632000000000
GROUP BY event_name, day   

然后您可以使用您喜欢的任何工具来调整结果

例如,在不离开 UI 的情况下使用 BigQuery Mate,您可以获得如下所示的枢轴

快速披露 - 我是 BigQuery Mate Chrome Extension

的作者

请注意:我没有调整或更改您的查询逻辑 - 我只是回答了您的具体问题 - 是否有更优化的方式来编写此内容?