通过分组将缺失值替换为多列的先前值

Replace missing values with previous value for multiple columns by grouping

我有一个包含 6 个变量的数据框。对于每一列,同一组的数据相同,但有一些缺失值。我想通过为每个变量复制同一组的值来填充这些缺失值。如果某个特定组的所有值都缺失,则应填写上述组的值。所以,我希望结果为 df_complete.

这是我尝试过的方法,但是当缺少对任何组的第一次观察时它会失败。无法弄清楚其中有什么问题。

set.seed(123)
df <- data.frame(matrix(rnorm(100), ncol = 5))
df$Group <- letters[1:20]
df <- df[rep(seq_len(nrow(df)), sample(1:10, 20, replace = T)),]
df_complete <- df
df$X1[sample(1:nrow(df), 15)] <- NA
df$X2[sample(1:nrow(df), 10)] <- NA
df$X3[sample(1:nrow(df), 25)] <- NA
df$X4[sample(1:nrow(df), 10)] <- NA
df$X5[sample(1:nrow(df), 15)] <- NA

lvcf <- function(x)
{
  miss_ind <- which(is.na(x))

  if(length(miss_ind) != 0)
  {
    if(miss_ind[1]==1)
    {
      ind1 <- which(!is.na(x))[1]
      x[1] <- x[ind1]
      miss_ind <- which(is.na(x))
    }

    for(i in 1:length(miss_ind))
    {
      x[miss_ind[i]] <- x[miss_ind[i]-1]
    }
  }      
  return(x)
}

df_complete <- df %>%
  group_by(Group) %>%
  sapply(lvcf)

程序包 zoo 具有处理此类问题的功能,na.locflast observation carried forward

library(zoo)
df_complete <- df %>%
  group_by(Group) %>%
  na.locf(., na.rm = FALSE)

head(df_complete)
## A tibble: 6 x 6
## Groups:   Group [2]
#           X1          X2          X3          X4           X5 Group
#        <chr>       <chr>       <chr>       <chr>        <chr> <chr>
#1 -0.56047565 -1.06782371 -0.69470698        <NA>  0.005764186     a
#2 -0.56047565 -1.06782371 -0.69470698  0.37963948  0.005764186     a
#3 -0.56047565 -1.06782371 -0.69470698  0.37963948  0.005764186     a
#4 -0.23017749 -0.21797491 -0.20791728 -0.50232345  0.385280401     b
#5 -0.23017749 -0.21797491 -0.20791728 -0.50232345  0.385280401     b
#6 -0.23017749 -0.21797491 -0.20791728 -0.50232345  0.385280401     b

注意 X4 列中的 <NA>

编辑。
根据下面 OP 的评论和 G. Grothendieck 的回答,以下内容删除了所有 NA 值。只需使用第二个 na.locf 和参数 fromLast = TRUE.

df_complete <- df %>%
  group_by(Group) %>%
  na.locf(., na.rm = FALSE) %>%
  na.locf(., fromLast = TRUE)

head(df_complete)
## A tibble: 6 x 6
## Groups:   Group [2]
#           X1          X2          X3          X4           X5 Group
#        <chr>       <chr>       <chr>       <chr>        <chr> <chr>
#1 -0.56047565 -1.06782371 -0.69470698  0.37963948  0.005764186     a
#2 -0.56047565 -1.06782371 -0.69470698  0.37963948  0.005764186     a
#3 -0.56047565 -1.06782371 -0.69470698  0.37963948  0.005764186     a
#4 -0.23017749 -0.21797491 -0.20791728 -0.50232345  0.385280401     b
#5 -0.23017749 -0.21797491 -0.20791728 -0.50232345  0.385280401     b
#6 -0.23017749 -0.21797491 -0.20791728 -0.50232345  0.385280401     b

编辑 2
根据 OP 发现的错误,这是一个仅使用 base R 的解决方案。我将用 NA 值创建一个新的 df 从每个组开始,但第一个,即组 a.

set.seed(123)

df2 <- data.frame(X1 = rnorm(20),
                  X2 = rnorm(20),
                  Group = rep(letters[1:4], each = 5))
df2[c(6, 11, 16), 1:2] <- NA

df2_complete <- lapply(split(df2, df2$Group), function(x){
        k <- which(names(x) == "Group")
        x[-k] <- sapply(x[-k], na.locf, na.rm = FALSE)
        x[-k] <- sapply(x[-k], na.locf, fromLast = TRUE)
        x
})
df2_complete <- do.call(rbind, df2_complete)
row.names(df2_complete) <- NULL
df2_complete