使用数据框中的值指定 read_csv 中的列类型

Specify Column types in read_csv by using values in a dataframe

我正在尝试读取包含多个 csv 文件的目录,每个文件大约有 7K+ 行和 ~ 1800 列。我有一个可以读入数据框的数据字典,其中数据字典的每一行都标识变量(列)名称以及数据类型。

查看 readr 包中的 ?read_csv,可以指定列类型。但是,鉴于我有将近 1800 列要指定,我希望使用可用数据字典中的信息以函数所需的正确格式指定 column/type 对。

另一种不太理想的方法是将每一列作为一个字符读入,然后根据需要手动修改。

如果您能提供有关如何指定列类型的任何帮助,我们将不胜感激。

如果有帮助,这是我的代码,用于获取数据字典并将其转化为我所指的格式。

## Get the data dictionary
URL = "https://collegescorecard.ed.gov/assets/CollegeScorecardDataDictionary.xlsx"
download.file(URL, destfile="raw-data/dictionary.xlsx")

## read in the dictionary to get the variables
dict = read_excel("raw-data/dictionary.xlsx", sheet = "data_dictionary")
colnames(dict) = tolower(gsub(" ", "_", colnames(dict)))
dict = dict %>% filter(!is.na(variable_name))

## create a data dictionary
## 
dict <- dict %>% mutate(variable_type = case_when(api_data_type == "integer" ~ "i", 
                                                  api_data_type == "autocomplete" ~ "c", #assumption that this is a string
                                                  api_data_type == "string" ~ "c",
                                                  api_data_type == "float" ~ "d")) 

returns :

> ## read in the dictionary to get the variables
> dict = read_excel("raw-data/dictionary.xlsx", sheet = "data_dictionary")
> colnames(dict) = tolower(gsub(" ", "_", colnames(dict)))
> dict = dict %>% filter(!is.na(variable_name))
> dict <- dict %>% mutate(variable_type = case_when(api_data_type == "integer" ~ "i", 
+                                                   api_data_type == "autocomplete" ~ "c", #assumption that this is a string
+                                                   api_data_type == "string" ~ "c",
+                                                   api_data_type == "float" ~ "d"))
Error: object 'api_data_type' not found

和我的会话信息

> sessionInfo()
R version 3.3.1 (2016-06-21)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: OS X 10.11.6 (El Capitan)

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] stringr_1.2.0 readxl_0.1.1  readr_1.1.0   dplyr_0.5.0  

loaded via a namespace (and not attached):
 [1] rjson_0.2.15   lazyeval_0.2.0 magrittr_1.5   R6_2.2.2       assertthat_0.1 hms_0.2        DBI_0.7        tools_3.3.1   
 [9] tibble_1.2     yaml_2.1.14    Rcpp_0.12.11   stringi_1.1.5  jsonlite_1.5  

您可以结合使用 mutatecase_when 以使用紧凑的字符串表示形式映射 api_data_type 列。这是每个列类型由单个字母表示的地方:c = 字符,i = 整数,n = 数字,d = double,l = 逻辑等。现在可以在 col_types 参数中使用此字符向量read_csv 的。

## Load libraries
library(dplyr)
library(readxl)

## Get the data dictionary
URL = "https://collegescorecard.ed.gov/assets/CollegeScorecardDataDictionary.xlsx"
download.file(URL, destfile="raw-data/dictionary.xlsx")

## read in the dictionary to get the variables
dict = read_excel("raw-data/dictionary.xlsx", sheet = "data_dictionary")
colnames(dict) = tolower(gsub(" ", "_", colnames(dict)))
dict = dict %>% filter(!is.na(variable_name))

unique(dict$api_data_type)
#> [1] "integer"      "autocomplete" "string"       "float"

dict <- dict %>% mutate(variable_type = case_when(api_data_type == "integer" ~ "i", 
                                                  api_data_type == "autocomplete" ~ "c", #assumption that this is a string
                                                  api_data_type == "string" ~ "c",
                                                  api_data_type == "float" ~ "d"
                                                  ) 
                        )  
cnames <- dict %>% select(variable_name) %>% pull
head(cnames)
#> [1] "UNITID" "OPEID"  "OPEID6" "INSTNM" "CITY"   "STABBR"
ctypes <- dict %>% select(variable_type) %>% pull
head(ctypes)
#> [1] "i" "i" "i" "c" "c" "c"