将带有嵌套列表的 Geo json 转换为 pandas 数据框

Convert Geo json with nested lists to pandas dataframe

我有一个巨大的 geo json 这种形式:

 {'features': [{'properties': {'MARKET': 'Albany',
    'geometry': {'coordinates': [[[-74.264948, 42.419877, 0],
       [-74.262041, 42.425856, 0],
       [-74.261175, 42.427631, 0],
       [-74.260384, 42.429253, 0]]],
     'type': 'Polygon'}}},
  {'properties': {'MARKET': 'Albany',
    'geometry': {'coordinates': [[[-73.929627, 42.078788, 0],
       [-73.929114, 42.081658, 0]]],
     'type': 'Polygon'}}},
  {'properties': {'MARKET': 'Albuquerque',
    'geometry': {'coordinates': [[[-74.769198, 43.114089, 0],
       [-74.76786, 43.114496, 0],
       [-74.766474, 43.114656, 0]]],
     'type': 'Polygon'}}}],
 'type': 'FeatureCollection'}

看完json:

import json
with open('x.json') as f:
    data = json.load(f)

我将值读入列表,然后读入数据框:

#to get a list of all markets
mkt=set([f['properties']['MARKET'] for f in data['features']])

#to create a list of market and associated lat long
markets=[(market,list(chain.from_iterable(f['geometry']['coordinates']))) for f in data['features'] for market in mkt if f['properties']['MARKET']==mkt]

df = pd.DataFrame(markets[0:], columns=['a','b'])     

df 的前几行是:

      a       b
0   Albany  [[-74.264948, 42.419877, 0], [-74.262041, 42.4...
1   Albany  [[-73.929627, 42.078788, 0], [-73.929114, 42.0...
2   Albany  [[-74.769198, 43.114089, 0], [-74.76786, 43.11...

然后为了取消嵌套 b 列中的嵌套列表,我使用了 pandas concat:

df1 = pd.concat([df.iloc[:,0:1], df['b'].apply(pd.Series)], axis=1)

但这是创建了 8070 个包含许多 NaN 的列。有没有办法按市场(a 列)对所有纬度和经度进行分组?需要一百万行乘以两列的数据框。

所需的操作是:

mkt         lat         long 
Albany      42.419877   -74.264948
Albany      42.078788   -73.929627
..
Albuquerque  35.105361   -106.640342

请注意,列表元素([-74.769198, 43.114089, 0])中的零需要忽略。

类似这样的东西??

from pandas.io.json import json_normalize
df = json_normalize(geojson["features"])

coords = 'properties.geometry.coordinates'

df2 = (df[coords].apply(lambda r: [(i[0],i[1]) for i in r[0]])
           .apply(pd.Series).stack()
           .reset_index(level=1).rename(columns={0:coords,"level_1":"point"})
           .join(df.drop(coords,1), how='left')).reset_index(level=0)

df2[['lat','long']] = df2[coords].apply(pd.Series)

df2

输出:

   index  point properties.geometry.coordinates properties.MARKET  \
0      0      0         (-74.264948, 42.419877)            Albany   
1      0      1         (-74.262041, 42.425856)            Albany   
2      0      2         (-74.261175, 42.427631)            Albany   
3      0      3         (-74.260384, 42.429253)            Albany   
4      1      0         (-73.929627, 42.078788)            Albany   
5      1      1         (-73.929114, 42.081658)            Albany   
6      2      0         (-74.769198, 43.114089)       Albuquerque   
7      2      1          (-74.76786, 43.114496)       Albuquerque   
8      2      2         (-74.766474, 43.114656)       Albuquerque   

  properties.geometry.type        lat       long  
0                  Polygon -74.264948  42.419877  
1                  Polygon -74.262041  42.425856  
2                  Polygon -74.261175  42.427631  
3                  Polygon -74.260384  42.429253  
4                  Polygon -73.929627  42.078788  
5                  Polygon -73.929114  42.081658  
6                  Polygon -74.769198  43.114089  
7                  Polygon -74.767860  43.114496  
8                  Polygon -74.766474  43.114656 

如果:

geojson = {'features': [{'properties': {'MARKET': 'Albany',
    'geometry': {'coordinates': [[[-74.264948, 42.419877, 0],
       [-74.262041, 42.425856, 0],
       [-74.261175, 42.427631, 0],
       [-74.260384, 42.429253, 0]]],
     'type': 'Polygon'}}},
  {'properties': {'MARKET': 'Albany',
    'geometry': {'coordinates': [[[-73.929627, 42.078788, 0],
       [-73.929114, 42.081658, 0]]],
     'type': 'Polygon'}}},
  {'properties': {'MARKET': 'Albuquerque',
    'geometry': {'coordinates': [[[-74.769198, 43.114089, 0],
       [-74.76786, 43.114496, 0],
       [-74.766474, 43.114656, 0]]],
     'type': 'Polygon'}}}],
 'type': 'FeatureCollection'}

@Anton_vBR回答得很好!

但是,也可以考虑 "geopandas" 库作为替代:

import geopandas

df = geopandas.read_file("yourfile.geojson")

其中 df 将是 "class geopandas.GeoDataFrame",这将允许您像普通 pandas 的 DataFrame 一样操作 geojson(通过内部结构递归)

上面的答案都很好,但这里有些不同。文档中的 Awkward Array library (note: I'm the author) is meant for working with nested data structures like this at large scale. As a coincidence, I used a GeoJSON file as a motivating example,尽管我正在编写更多教程,这些教程将更大的 Parquet 文件作为示例数据,与地理无关。

(这就是这与@kamal-barshevich 的 geopandas 回答的不同之处:geopandas 是一个特定领域的库,它“了解”地理并且可能具有与该领域的领域专家相关的功能。尴尬的数组是一个通用的用于操作对地理一无所知的数据结构的库。)

我上面链接的文档有一些使用数组函数本身操作 GeoJSON 文件的示例,没有 Pandas,从这里开始:

>>> import urllib.request
>>> import awkward as ak
>>> 
>>> url = "https://raw.githubusercontent.com/Chicago/osd-bike-routes/master/data/Bikeroutes.geojson"
>>> bikeroutes_json = urllib.request.urlopen(url).read()
>>> bikeroutes = ak.from_json(bikeroutes_json)
>>> bikeroutes
<Record ... [-87.7, 42], [-87.7, 42]]]}}]} type='{"type": string, "crs": {"type"...'>

但在这个答案中,我将制作您想要的 Pandas 结构。 ak.to_pandas function turns nested lists into a MultiIndex。将它应用到 "coordinates" inside "geometry" inside "features":

>>> bikeroutes.features.geometry.coordinates
<Array [[[[-87.8, 41.9], ... [-87.7, 42]]]] type='1061 * var * var * var * float64'>
>>> 
>>> ak.to_pandas(bikeroutes.features.geometry.coordinates)
                                              values
entry subentry subsubentry subsubsubentry           
0     0        0           0              -87.788573
                           1               41.923652
               1           0              -87.788646
                           1               41.923651
               2           0              -87.788845
...                                              ...
1060  0        8           1               41.950493
               9           0              -87.714819
                           1               41.950724
               10          0              -87.715284
                           1               41.951042

[96724 rows x 1 columns]

列表嵌套深三层,最后一层是经度、纬度对(例如 [-87.788573, 41.923652])。您希望这些在单独的列中:

>>> bikeroutes.features.geometry.coordinates[..., 0]
<Array [[[-87.8, -87.8, ... -87.7, -87.7]]] type='1061 * var * var * float64'>
>>> bikeroutes.features.geometry.coordinates[..., 1]
<Array [[[41.9, 41.9, 41.9, ... 42, 42, 42]]] type='1061 * var * var * float64'>

这是使用类似于 NumPy 的切片(Awkward Array 是 NumPy 的泛化),获取除最后一个维度之外的所有维度 (...);第一个表达式提取项目 0(经度),第二个表达式提取项目 1(纬度)。

我们可以使用 ak.zip 将它们合并到一个新的记录类型中,为它们指定列名:

>>> ak.to_pandas(ak.zip({
...     "longitude": bikeroutes.features.geometry.coordinates[..., 0],
...     "latitude": bikeroutes.features.geometry.coordinates[..., 1],
... }))
                            longitude   latitude
entry subentry subsubentry                      
0     0        0           -87.788573  41.923652
               1           -87.788646  41.923651
               2           -87.788845  41.923650
               3           -87.788951  41.923649
               4           -87.789092  41.923648
...                               ...        ...
1060  0        6           -87.714026  41.950199
               7           -87.714335  41.950388
               8           -87.714486  41.950493
               9           -87.714819  41.950724
               10          -87.715284  41.951042

[48362 rows x 2 columns]

这与您要查找的内容非常接近。您最不想做的就是将其中的每一个与 "features" 中的 "properties" 之一相匹配。我的 GeoJSON 文件没有 "MARKET":

>>> bikeroutes.features.properties.type
1061 * {"STREET": string, "TYPE": string, "BIKEROUTE": string, "F_STREET": string, "T_STREET": option[string]}

"STREET" 可能是一个很好的替身。这些属性与坐标处于不同的嵌套级别:

>>> bikeroutes.features.geometry.coordinates[..., 0].type
1061 * var * var * float64
>>> bikeroutes.features.properties.STREET.type
1061 * string

经度点是比街道名称深两层的嵌套列表,但是ak.zip将它们向下广播(类似于NumPy的广播的概念,需要可变长度列表的扩展).

最终表达式为:

>>> ak.to_pandas(ak.zip({
...     "longitude": bikeroutes.features.geometry.coordinates[..., 0],
...     "latitude": bikeroutes.features.geometry.coordinates[..., 1],
...     "street": bikeroutes.features.properties.STREET,
... }))
                            longitude   latitude           street
entry subentry subsubentry                                       
0     0        0           -87.788573  41.923652  W FULLERTON AVE
               1           -87.788646  41.923651  W FULLERTON AVE
               2           -87.788845  41.923650  W FULLERTON AVE
               3           -87.788951  41.923649  W FULLERTON AVE
               4           -87.789092  41.923648  W FULLERTON AVE
...                               ...        ...              ...
1060  0        6           -87.714026  41.950199     N ELSTON AVE
               7           -87.714335  41.950388     N ELSTON AVE
               8           -87.714486  41.950493     N ELSTON AVE
               9           -87.714819  41.950724     N ELSTON AVE
               10          -87.715284  41.951042     N ELSTON AVE

[48362 rows x 3 columns]

因为你只是想把行情和经纬度联系起来,你可以忽略MultiIndex,或者你可以用Pandas函数把那个MultiIndex的组成部分变成列。