最大 cpu 使用嵌套 for 循环的最简单方法是什么?

What is the easiest way to make maximum cpu usage for nested for-loops?

我有代码可以对元素进行独特的组合。共有 6 种,每种约有 100 种。所以有 100^6 种组合。必须计算每个组合,检查相关性,然后丢弃或保存。

代码的相关部分如下所示:

def modconffactory():
for transmitter in totaltransmitterdict.values():
    for reciever in totalrecieverdict.values():
        for processor in totalprocessordict.values():
            for holoarray in totalholoarraydict.values():
                for databus in totaldatabusdict.values():
                    for multiplexer in totalmultiplexerdict.values():
                        newconfiguration = [transmitter, reciever, processor, holoarray, databus, multiplexer]
                        data_I_need = dosomethingwith(newconfiguration)
                        saveforlateruse_if_useful(data_I_need)

现在这需要很长时间,但没关系,但现在我意识到这个过程(进行配置和计算以供以后使用)一次只使用我的 8 个处理器内核中的 1 个。

我一直在阅读有关多线程和多处理的内容,但我只看到了不同进程的示例,而没有看到如何对一个进程进行多线程处理。在我的代码中,我调用了两个函数:'dosomethingwith()' 和 'saveforlateruse_if_useful()'。我可以将 those 分成单独的进程,并使 those 运行 与 for 循环同时进行,对吗?

但是 for 循环本身呢?我可以加快那个过程吗?因为那是时间消耗所在。 (<-- 这是我的主要问题)

有外挂吗?例如编译为 C 然后 os 自动多线程?

您可以 运行 您的函数是这样的:

from multiprocessing import Pool

def f(x):
    return x*x

if __name__ == '__main__':
   p = Pool(5)
   print(p.map(f, [1, 2, 3]))

https://docs.python.org/2/library/multiprocessing.html#using-a-pool-of-workers

我只看到不同进程的例子,没有看到一个进程如何多线程

Python里面有多线程,但是因为GIL(Global Interpreter Lock),所以效率很低。所以如果你想使用你所有的处理器核心,如果你想要并发,你别无选择,只能使用多个进程,这可以通过 multiprocessing 模块来完成(好吧,你也可以使用另一种语言而不会出现这样的问题)

您的案例的多处理用法的大致示例:

import multiprocessing

WORKERS_NUMBER = 8

def modconffactoryProcess(generator, step, offset, conn):
    """
    Function to be invoked by every worker process.

    generator: iterable object, the very top one of all you are iterating over, 
    in your case, totalrecieverdict.values()

    We are passing a whole iterable object to every worker, they all will iterate 
    over it. To ensure they will not waste time by doing the same things 
    concurrently, we will assume this: each worker will process only each stepTH 
    item, starting with offsetTH one. step must be equal to the WORKERS_NUMBER, 
    and offset must be a unique number for each worker, varying from 0 to 
    WORKERS_NUMBER - 1

    conn: a multiprocessing.Connection object, allowing the worker to communicate 
    with the main process
    """
    for i, transmitter in enumerate(generator):
        if i % step == offset:
            for reciever in totalrecieverdict.values():
                for processor in totalprocessordict.values():
                    for holoarray in totalholoarraydict.values():
                        for databus in totaldatabusdict.values():
                            for multiplexer in totalmultiplexerdict.values():
                                newconfiguration = [transmitter, reciever, processor, holoarray, databus, multiplexer]
                                data_I_need = dosomethingwith(newconfiguration)
                                saveforlateruse_if_useful(data_I_need)
    conn.send('done')


def modconffactory():
    """
    Function to launch all the worker processes and wait until they all complete 
    their tasks
    """
    processes = []
    generator = totaltransmitterdict.values()
    for i in range(WORKERS_NUMBER):
        conn, childConn = multiprocessing.Pipe()
        process = multiprocessing.Process(target=modconffactoryProcess, args=(generator, WORKERS_NUMBER, i, childConn))
        process.start()
        processes.append((process, conn))
    # Here we have created, started and saved to a list all the worker processes
    working = True
    finishedProcessesNumber = 0
    try:
        while working:
            for process, conn in processes:
                if conn.poll():  # Check if any messages have arrived from a worker
                    message = conn.recv()
                    if message == 'done':
                        finishedProcessesNumber += 1
            if finishedProcessesNumber == WORKERS_NUMBER:
                working = False
    except KeyboardInterrupt:
        print('Aborted')

您可以根据需要调整WORKERS_NUMBER

multiprocessing.Pool相同:

import multiprocessing

WORKERS_NUMBER = 8

def modconffactoryProcess(transmitter):
    for reciever in totalrecieverdict.values():
        for processor in totalprocessordict.values():
            for holoarray in totalholoarraydict.values():
                for databus in totaldatabusdict.values():
                    for multiplexer in totalmultiplexerdict.values():
                        newconfiguration = [transmitter, reciever, processor, holoarray, databus, multiplexer]
                        data_I_need = dosomethingwith(newconfiguration)
                        saveforlateruse_if_useful(data_I_need)


def modconffactory():
    pool = multiprocessing.Pool(WORKERS_NUMBER)
    pool.map(modconffactoryProcess, totaltransmitterdict.values())

您可能想使用 .map_async 而不是 .map

两个片段的作用相同,但我会说在第一个片段中您对程序有更多的控制权。

不过我想第二个是最简单的:)

但是第一个应该让您了解第二个中发生的事情

multiprocessing 文档:https://docs.python.org/3/library/multiprocessing.html