PySpark 不会转换时间戳
PySpark won't convert timestamp
我有一个非常简单的 CSV,称之为 test.csv
name,timestamp,action
A,2012-10-12 00:30:00.0000000,1
B,2012-10-12 01:00:00.0000000,2
C,2012-10-12 01:30:00.0000000,2
D,2012-10-12 02:00:00.0000000,3
E,2012-10-12 02:30:00.0000000,1
我正在尝试使用 pyspark 阅读它并添加一个指示月份的新列。
首先我读入了数据,一切正常。
df = spark.read.csv('test.csv', inferSchema=True, header=True)
df.printSchema()
df.show()
输出:
root
|-- name: string (nullable = true)
|-- timestamp: timestamp (nullable = true)
|-- action: double (nullable = true)
+----+-------------------+------+
|name| timestamp|action|
+----+-------------------+------+
| A|2012-10-12 00:30:00| 1.0|
| B|2012-10-12 01:00:00| 2.0|
| C|2012-10-12 01:30:00| 2.0|
| D|2012-10-12 02:00:00| 3.0|
| E|2012-10-12 02:30:00| 1.0|
+----+-------------------+------+
但是当我尝试添加我的专栏时,格式化选项似乎没有任何作用。
df.withColumn('month', to_date(col('timestamp'), format='MMM')).show()
输出:
+----+-------------------+------+----------+
|name| timestamp|action| month|
+----+-------------------+------+----------+
| A|2012-10-12 00:30:00| 1.0|2012-10-12|
| B|2012-10-12 01:00:00| 2.0|2012-10-12|
| C|2012-10-12 01:30:00| 2.0|2012-10-12|
| D|2012-10-12 02:00:00| 3.0|2012-10-12|
| E|2012-10-12 02:30:00| 1.0|2012-10-12|
+----+-------------------+------+----------+
这是怎么回事?
to_date
和 format
用于解析字符串类型的列。你需要的是date_format
from pyspark.sql.functions import date_format
df.withColumn('month', date_format(col('timestamp'), format='MMM')).show()
# +----+-------------------+------+-----+
# |name| timestamp|action|month|
# +----+-------------------+------+-----+
# | A|2012-10-12 00:30:00| 1.0| Oct|
# | B|2012-10-12 01:00:00| 2.0| Oct|
# | C|2012-10-12 01:30:00| 2.0| Oct|
# | D|2012-10-12 02:00:00| 3.0| Oct|
# | E|2012-10-12 02:30:00| 1.0| Oct|
# +----+-------------------+------+-----+
我有一个非常简单的 CSV,称之为 test.csv
name,timestamp,action
A,2012-10-12 00:30:00.0000000,1
B,2012-10-12 01:00:00.0000000,2
C,2012-10-12 01:30:00.0000000,2
D,2012-10-12 02:00:00.0000000,3
E,2012-10-12 02:30:00.0000000,1
我正在尝试使用 pyspark 阅读它并添加一个指示月份的新列。
首先我读入了数据,一切正常。
df = spark.read.csv('test.csv', inferSchema=True, header=True)
df.printSchema()
df.show()
输出:
root
|-- name: string (nullable = true)
|-- timestamp: timestamp (nullable = true)
|-- action: double (nullable = true)
+----+-------------------+------+
|name| timestamp|action|
+----+-------------------+------+
| A|2012-10-12 00:30:00| 1.0|
| B|2012-10-12 01:00:00| 2.0|
| C|2012-10-12 01:30:00| 2.0|
| D|2012-10-12 02:00:00| 3.0|
| E|2012-10-12 02:30:00| 1.0|
+----+-------------------+------+
但是当我尝试添加我的专栏时,格式化选项似乎没有任何作用。
df.withColumn('month', to_date(col('timestamp'), format='MMM')).show()
输出:
+----+-------------------+------+----------+
|name| timestamp|action| month|
+----+-------------------+------+----------+
| A|2012-10-12 00:30:00| 1.0|2012-10-12|
| B|2012-10-12 01:00:00| 2.0|2012-10-12|
| C|2012-10-12 01:30:00| 2.0|2012-10-12|
| D|2012-10-12 02:00:00| 3.0|2012-10-12|
| E|2012-10-12 02:30:00| 1.0|2012-10-12|
+----+-------------------+------+----------+
这是怎么回事?
to_date
和 format
用于解析字符串类型的列。你需要的是date_format
from pyspark.sql.functions import date_format
df.withColumn('month', date_format(col('timestamp'), format='MMM')).show()
# +----+-------------------+------+-----+
# |name| timestamp|action|month|
# +----+-------------------+------+-----+
# | A|2012-10-12 00:30:00| 1.0| Oct|
# | B|2012-10-12 01:00:00| 2.0| Oct|
# | C|2012-10-12 01:30:00| 2.0| Oct|
# | D|2012-10-12 02:00:00| 3.0| Oct|
# | E|2012-10-12 02:30:00| 1.0| Oct|
# +----+-------------------+------+-----+