ValueError: Input contains NaN, infinity or a value too large for dtype('float64') while preprocessing Data
ValueError: Input contains NaN, infinity or a value too large for dtype('float64') while preprocessing Data
我有两个 CSV 文件 (Training set and Test Set)。由于在少数列中有可见的 NaN
值(status
、hedge_value
、indicator_code
、portfolio_id
、desk_id
、office_id
).
我通过将 NaN
值替换为对应于该列的一些巨大值来开始该过程。
然后我正在做 LabelEncoding
来删除文本数据并将它们转换为数值数据。
现在,当我尝试对分类数据执行 OneHotEncoding
时,出现错误。我尝试将输入一一输入到 OneHotEncoding
构造函数中,但每一列都出现相同的错误。
基本上,我的最终目标是预测 return 值,但因此我陷入了数据预处理部分。我该如何解决这个问题?
我正在使用 Python3.6
与 Pandas
和 Sklearn
进行数据处理。
代码
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
test_data = pd.read_csv('test.csv')
train_data = pd.read_csv('train.csv')
# Replacing Nan values here
train_data['status']=train_data['status'].fillna(2.0)
train_data['hedge_value']=train_data['hedge_value'].fillna(2.0)
train_data['indicator_code']=train_data['indicator_code'].fillna(2.0)
train_data['portfolio_id']=train_data['portfolio_id'].fillna('PF99999999')
train_data['desk_id']=train_data['desk_id'].fillna('DSK99999999')
train_data['office_id']=train_data['office_id'].fillna('OFF99999999')
x_train = train_data.iloc[:, :-1].values
y_train = train_data.iloc[:, 17].values
# =============================================================================
# from sklearn.preprocessing import Imputer
# imputer = Imputer(missing_values="NaN", strategy="mean", axis=0)
# imputer.fit(x_train[:, 15:17])
# x_train[:, 15:17] = imputer.fit_transform(x_train[:, 15:17])
#
# imputer.fit(x_train[:, 12:13])
# x_train[:, 12:13] = imputer.fit_transform(x_train[:, 12:13])
# =============================================================================
# Encoding categorical data, i.e. Text data, since calculation happens on numbers only, so having text like
# Country name, Purchased status will give trouble
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
x_train[:, 0] = labelencoder_X.fit_transform(x_train[:, 0])
x_train[:, 1] = labelencoder_X.fit_transform(x_train[:, 1])
x_train[:, 2] = labelencoder_X.fit_transform(x_train[:, 2])
x_train[:, 3] = labelencoder_X.fit_transform(x_train[:, 3])
x_train[:, 6] = labelencoder_X.fit_transform(x_train[:, 6])
x_train[:, 8] = labelencoder_X.fit_transform(x_train[:, 8])
x_train[:, 14] = labelencoder_X.fit_transform(x_train[:, 14])
# =============================================================================
# import numpy as np
# x_train[:, 3] = x_train[:, 3].reshape(x_train[:, 3].size,1)
# x_train[:, 3] = x_train[:, 3].astype(np.float64, copy=False)
# np.isnan(x_train[:, 3]).any()
# =============================================================================
# =============================================================================
# from sklearn.preprocessing import StandardScaler
# sc_X = StandardScaler()
# x_train = sc_X.fit_transform(x_train)
# =============================================================================
onehotencoder = OneHotEncoder(categorical_features=[0,1,2,3,6,8,14])
x_train = onehotencoder.fit_transform(x_train).toarray() # Replace Country Names with One Hot Encoding.
错误
Traceback (most recent call last):
File "<ipython-input-4-4992bf3d00b8>", line 58, in <module>
x_train = onehotencoder.fit_transform(x_train).toarray() # Replace Country Names with One Hot Encoding.
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py", line 2019, in fit_transform
self.categorical_features, copy=True)
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py", line 1809, in _transform_selected
X = check_array(X, accept_sparse='csc', copy=copy, dtype=FLOAT_DTYPES)
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py", line 453, in check_array
_assert_all_finite(array)
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py", line 44, in _assert_all_finite
" or a value too large for %r." % X.dtype)
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
错误在于您将其他特征视为非分类特征。
'hedge_value'
、'indicator_code'
等列包含混合类型的数据,例如原始 csv 中的 TRUE
、FALSE
和 [=] 中的 2.0
17=] 呼叫。 OneHotEncoder 无法处理它们。
如 OneHotEncoder fit()
文档中所述:
fit(X, y=None)
Fit OneHotEncoder to X.
Parameters:
X : array-like, shape [n_samples, n_feature]
Input array of type int.
你可以看到它要求所有的X都是数值类型(int,但float也可以)。
作为解决方法,您可以执行此操作来编码您的分类特征:
X_train_categorical = x_train[:, [0,1,2,3,6,8,14]]
onehotencoder = OneHotEncoder()
X_train_categorical = onehotencoder.fit_transform(X_train_categorical).toarray()
然后将其与您的非分类特征连接起来。
发布问题后,我再次浏览数据集,发现另一列带有 NaN
。我不敢相信我在这上面浪费了这么多时间,而我本可以使用 Pandas 函数来获取具有 NaN
的列的列表。所以,使用下面的代码,我发现我错过了三列。当我本可以使用此功能时,我正在视觉上搜索 NaN
。在处理了这些新的 NaN
之后,代码正常工作。
pd.isnull(train_data).sum() > 0
结果
portfolio_id False
desk_id False
office_id False
pf_category False
start_date False
sold True
country_code False
euribor_rate False
currency False
libor_rate True
bought True
creation_date False
indicator_code False
sell_date False
type False
hedge_value False
status False
return False
dtype: bool
要在生产中使用它,最佳做法是使用 Imputer,然后将模型保存在 pkl 中
这是一个解决方法
df[df==np.inf]=np.nan
df.fillna(df.mean(), inplace=True)
更好用
我有两个 CSV 文件 (Training set and Test Set)。由于在少数列中有可见的 NaN
值(status
、hedge_value
、indicator_code
、portfolio_id
、desk_id
、office_id
).
我通过将 NaN
值替换为对应于该列的一些巨大值来开始该过程。
然后我正在做 LabelEncoding
来删除文本数据并将它们转换为数值数据。
现在,当我尝试对分类数据执行 OneHotEncoding
时,出现错误。我尝试将输入一一输入到 OneHotEncoding
构造函数中,但每一列都出现相同的错误。
基本上,我的最终目标是预测 return 值,但因此我陷入了数据预处理部分。我该如何解决这个问题?
我正在使用 Python3.6
与 Pandas
和 Sklearn
进行数据处理。
代码
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
test_data = pd.read_csv('test.csv')
train_data = pd.read_csv('train.csv')
# Replacing Nan values here
train_data['status']=train_data['status'].fillna(2.0)
train_data['hedge_value']=train_data['hedge_value'].fillna(2.0)
train_data['indicator_code']=train_data['indicator_code'].fillna(2.0)
train_data['portfolio_id']=train_data['portfolio_id'].fillna('PF99999999')
train_data['desk_id']=train_data['desk_id'].fillna('DSK99999999')
train_data['office_id']=train_data['office_id'].fillna('OFF99999999')
x_train = train_data.iloc[:, :-1].values
y_train = train_data.iloc[:, 17].values
# =============================================================================
# from sklearn.preprocessing import Imputer
# imputer = Imputer(missing_values="NaN", strategy="mean", axis=0)
# imputer.fit(x_train[:, 15:17])
# x_train[:, 15:17] = imputer.fit_transform(x_train[:, 15:17])
#
# imputer.fit(x_train[:, 12:13])
# x_train[:, 12:13] = imputer.fit_transform(x_train[:, 12:13])
# =============================================================================
# Encoding categorical data, i.e. Text data, since calculation happens on numbers only, so having text like
# Country name, Purchased status will give trouble
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
x_train[:, 0] = labelencoder_X.fit_transform(x_train[:, 0])
x_train[:, 1] = labelencoder_X.fit_transform(x_train[:, 1])
x_train[:, 2] = labelencoder_X.fit_transform(x_train[:, 2])
x_train[:, 3] = labelencoder_X.fit_transform(x_train[:, 3])
x_train[:, 6] = labelencoder_X.fit_transform(x_train[:, 6])
x_train[:, 8] = labelencoder_X.fit_transform(x_train[:, 8])
x_train[:, 14] = labelencoder_X.fit_transform(x_train[:, 14])
# =============================================================================
# import numpy as np
# x_train[:, 3] = x_train[:, 3].reshape(x_train[:, 3].size,1)
# x_train[:, 3] = x_train[:, 3].astype(np.float64, copy=False)
# np.isnan(x_train[:, 3]).any()
# =============================================================================
# =============================================================================
# from sklearn.preprocessing import StandardScaler
# sc_X = StandardScaler()
# x_train = sc_X.fit_transform(x_train)
# =============================================================================
onehotencoder = OneHotEncoder(categorical_features=[0,1,2,3,6,8,14])
x_train = onehotencoder.fit_transform(x_train).toarray() # Replace Country Names with One Hot Encoding.
错误
Traceback (most recent call last):
File "<ipython-input-4-4992bf3d00b8>", line 58, in <module>
x_train = onehotencoder.fit_transform(x_train).toarray() # Replace Country Names with One Hot Encoding.
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py", line 2019, in fit_transform
self.categorical_features, copy=True)
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py", line 1809, in _transform_selected
X = check_array(X, accept_sparse='csc', copy=copy, dtype=FLOAT_DTYPES)
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py", line 453, in check_array
_assert_all_finite(array)
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py", line 44, in _assert_all_finite
" or a value too large for %r." % X.dtype)
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
错误在于您将其他特征视为非分类特征。
'hedge_value'
、'indicator_code'
等列包含混合类型的数据,例如原始 csv 中的 TRUE
、FALSE
和 [=] 中的 2.0
17=] 呼叫。 OneHotEncoder 无法处理它们。
如 OneHotEncoder fit()
文档中所述:
fit(X, y=None)
Fit OneHotEncoder to X.
Parameters:
X : array-like, shape [n_samples, n_feature]
Input array of type int.
你可以看到它要求所有的X都是数值类型(int,但float也可以)。
作为解决方法,您可以执行此操作来编码您的分类特征:
X_train_categorical = x_train[:, [0,1,2,3,6,8,14]]
onehotencoder = OneHotEncoder()
X_train_categorical = onehotencoder.fit_transform(X_train_categorical).toarray()
然后将其与您的非分类特征连接起来。
发布问题后,我再次浏览数据集,发现另一列带有 NaN
。我不敢相信我在这上面浪费了这么多时间,而我本可以使用 Pandas 函数来获取具有 NaN
的列的列表。所以,使用下面的代码,我发现我错过了三列。当我本可以使用此功能时,我正在视觉上搜索 NaN
。在处理了这些新的 NaN
之后,代码正常工作。
pd.isnull(train_data).sum() > 0
结果
portfolio_id False
desk_id False
office_id False
pf_category False
start_date False
sold True
country_code False
euribor_rate False
currency False
libor_rate True
bought True
creation_date False
indicator_code False
sell_date False
type False
hedge_value False
status False
return False
dtype: bool
要在生产中使用它,最佳做法是使用 Imputer,然后将模型保存在 pkl 中
这是一个解决方法
df[df==np.inf]=np.nan
df.fillna(df.mean(), inplace=True)
更好用