keras 自动编码器 "Error when checking target"
keras autoencoder "Error when checking target"
我正在尝试改编来自 keras 网站的二维卷积自动编码器示例:https://blog.keras.io/building-autoencoders-in-keras.html
我自己使用一维输入的情况:
from keras.layers import Input, Dense, Conv1D, MaxPooling1D, UpSampling1D
from keras.models import Model
from keras import backend as K
import scipy as scipy
import numpy as np
mat = scipy.io.loadmat('edata.mat')
emat = mat['edata']
input_img = Input(shape=(64,1)) # adapt this if using `channels_first` image data format
x = Conv1D(32, (9), activation='relu', padding='same')(input_img)
x = MaxPooling1D((4), padding='same')(x)
x = Conv1D(16, (9), activation='relu', padding='same')(x)
x = MaxPooling1D((4), padding='same')(x)
x = Conv1D(8, (9), activation='relu', padding='same')(x)
encoded = MaxPooling1D(4, padding='same')(x)
x = Conv1D(8, (9), activation='relu', padding='same')(encoded)
x = UpSampling1D((4))(x)
x = Conv1D(16, (9), activation='relu', padding='same')(x)
x = UpSampling1D((4))(x)
x = Conv1D(32, (9), activation='relu')(x)
x = UpSampling1D((4))(x)
decoded = Conv1D(1, (9), activation='sigmoid', padding='same')(x)
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
x_train = emat[:,0:80000]
x_train = np.reshape(x_train, (x_train.shape[1], 64, 1))
x_test = emat[:,80000:120000]
x_test = np.reshape(x_test, (x_test.shape[1], 64, 1))
from keras.callbacks import TensorBoard
autoencoder.fit(x_train, x_train,
epochs=50,
batch_size=128,
shuffle=True,
validation_data=(x_test, x_test),
callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])
但是,当我尝试 运行 autoencoder.fit():
时收到此错误
ValueError: Error when checking target: expected conv1d_165 to have
shape (None, 32, 1) but got array with shape (80000, 64, 1)
我知道我在设置图层时可能做错了什么,我只是将 maxpool 和 conv2d 大小更改为一维形式......我对 keras 或自动编码器的经验很少,任何人都看到我做错了吗?
谢谢
编辑:
我在新控制台上 运行 时的错误:
ValueError: Error when checking target: expected conv1d_7 to have
shape (None, 32, 1) but got array with shape (80000, 64, 1)
这是autoencoder.summary()
的输出
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 64, 1) 0
_________________________________________________________________
conv1d_1 (Conv1D) (None, 64, 32) 320
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 16, 32) 0
_________________________________________________________________
conv1d_2 (Conv1D) (None, 16, 16) 4624
_________________________________________________________________
max_pooling1d_2 (MaxPooling1 (None, 4, 16) 0
_________________________________________________________________
conv1d_3 (Conv1D) (None, 4, 8) 1160
_________________________________________________________________
max_pooling1d_3 (MaxPooling1 (None, 1, 8) 0
_________________________________________________________________
conv1d_4 (Conv1D) (None, 1, 8) 584
_________________________________________________________________
up_sampling1d_1 (UpSampling1 (None, 4, 8) 0
_________________________________________________________________
conv1d_5 (Conv1D) (None, 4, 16) 1168
_________________________________________________________________
up_sampling1d_2 (UpSampling1 (None, 16, 16) 0
_________________________________________________________________
conv1d_6 (Conv1D) (None, 8, 32) 4640
_________________________________________________________________
up_sampling1d_3 (UpSampling1 (None, 32, 32) 0
_________________________________________________________________
conv1d_7 (Conv1D) (None, 32, 1) 289
=================================================================
Total params: 12,785
Trainable params: 12,785
Non-trainable params: 0
_________________________________________________________________
由于自动编码器输出应该重构输入,最低要求是它们的维度应该匹配,对吗?
看看你的 autoencoder.summary()
,很容易确认情况并非如此:你的输入是形状 (64,1)
,而你最后一个卷积层的输出 conv1d_7
是 (32,1)
(我们忽略第一个维度中的 None
,因为它们指的是批量大小)。
让我们看看example in the Keras blog你link到(它是一个2D自动编码器,但想法是一样的):
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model
from keras import backend as K
input_img = Input(shape=(28, 28, 1)) # adapt this if using `channels_first` image data format
x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
# at this point the representation is (4, 4, 8) i.e. 128-dimensional
x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
这里是 autoencoder.summary()
在这种情况下的结果:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 28, 28, 1) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 28, 28, 16) 160
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 14, 14, 16) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 14, 14, 8) 1160
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 7, 7, 8) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 7, 7, 8) 584
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 4, 4, 8) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 4, 4, 8) 584
_________________________________________________________________
up_sampling2d_1 (UpSampling2 (None, 8, 8, 8) 0
_________________________________________________________________
conv2d_5 (Conv2D) (None, 8, 8, 8) 584
_________________________________________________________________
up_sampling2d_2 (UpSampling2 (None, 16, 16, 8) 0
_________________________________________________________________
conv2d_6 (Conv2D) (None, 14, 14, 16) 1168
_________________________________________________________________
up_sampling2d_3 (UpSampling2 (None, 28, 28, 16) 0
_________________________________________________________________
conv2d_7 (Conv2D) (None, 28, 28, 1) 145
=================================================================
Total params: 4,385
Trainable params: 4,385
Non-trainable params: 0
很容易确认这里输入和输出的维度(最后一个卷积层conv2d_7
)确实都是(28, 28, 1)
.
因此,summary()
方法是您构建自动编码器时的好帮手;您应该对参数进行试验,直到您确定生成的输出与输入的维度相同。我设法用你的自动编码器做到了这一点,只需将最后一个 UpSampling1D
层的 size
参数从 4 更改为 8:
input_img = Input(shape=(64,1))
x = Conv1D(32, (9), activation='relu', padding='same')(input_img)
x = MaxPooling1D((4), padding='same')(x)
x = Conv1D(16, (9), activation='relu', padding='same')(x)
x = MaxPooling1D((4), padding='same')(x)
x = Conv1D(8, (9), activation='relu', padding='same')(x)
encoded = MaxPooling1D(4, padding='same')(x)
x = Conv1D(8, (9), activation='relu', padding='same')(encoded)
x = UpSampling1D((4))(x)
x = Conv1D(16, (9), activation='relu', padding='same')(x)
x = UpSampling1D((4))(x)
x = Conv1D(32, (9), activation='relu')(x)
x = UpSampling1D((8))(x) ## <-- change here (was 4)
decoded = Conv1D(1, (9), activation='sigmoid', padding='same')(x)
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
在这种情况下,autoencoder.summary()
变为:
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 64, 1) 0
_________________________________________________________________
conv1d_1 (Conv1D) (None, 64, 32) 320
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 16, 32) 0
_________________________________________________________________
conv1d_2 (Conv1D) (None, 16, 16) 4624
_________________________________________________________________
max_pooling1d_2 (MaxPooling1 (None, 4, 16) 0
_________________________________________________________________
conv1d_3 (Conv1D) (None, 4, 8) 1160
_________________________________________________________________
max_pooling1d_3 (MaxPooling1 (None, 1, 8) 0
_________________________________________________________________
conv1d_4 (Conv1D) (None, 1, 8) 584
_________________________________________________________________
up_sampling1d_1 (UpSampling1 (None, 4, 8) 0
_________________________________________________________________
conv1d_5 (Conv1D) (None, 4, 16) 1168
_________________________________________________________________
up_sampling1d_2 (UpSampling1 (None, 16, 16) 0
_________________________________________________________________
conv1d_6 (Conv1D) (None, 8, 32) 4640
_________________________________________________________________
up_sampling1d_3 (UpSampling1 (None, 64, 32) 0
_________________________________________________________________
conv1d_7 (Conv1D) (None, 64, 1) 289
=================================================================
Total params: 12,785
Trainable params: 12,785
Non-trainable params: 0
输入和输出的维度匹配,因为它应该是...
我正在尝试改编来自 keras 网站的二维卷积自动编码器示例:https://blog.keras.io/building-autoencoders-in-keras.html
我自己使用一维输入的情况:
from keras.layers import Input, Dense, Conv1D, MaxPooling1D, UpSampling1D
from keras.models import Model
from keras import backend as K
import scipy as scipy
import numpy as np
mat = scipy.io.loadmat('edata.mat')
emat = mat['edata']
input_img = Input(shape=(64,1)) # adapt this if using `channels_first` image data format
x = Conv1D(32, (9), activation='relu', padding='same')(input_img)
x = MaxPooling1D((4), padding='same')(x)
x = Conv1D(16, (9), activation='relu', padding='same')(x)
x = MaxPooling1D((4), padding='same')(x)
x = Conv1D(8, (9), activation='relu', padding='same')(x)
encoded = MaxPooling1D(4, padding='same')(x)
x = Conv1D(8, (9), activation='relu', padding='same')(encoded)
x = UpSampling1D((4))(x)
x = Conv1D(16, (9), activation='relu', padding='same')(x)
x = UpSampling1D((4))(x)
x = Conv1D(32, (9), activation='relu')(x)
x = UpSampling1D((4))(x)
decoded = Conv1D(1, (9), activation='sigmoid', padding='same')(x)
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
x_train = emat[:,0:80000]
x_train = np.reshape(x_train, (x_train.shape[1], 64, 1))
x_test = emat[:,80000:120000]
x_test = np.reshape(x_test, (x_test.shape[1], 64, 1))
from keras.callbacks import TensorBoard
autoencoder.fit(x_train, x_train,
epochs=50,
batch_size=128,
shuffle=True,
validation_data=(x_test, x_test),
callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])
但是,当我尝试 运行 autoencoder.fit():
时收到此错误ValueError: Error when checking target: expected conv1d_165 to have shape (None, 32, 1) but got array with shape (80000, 64, 1)
我知道我在设置图层时可能做错了什么,我只是将 maxpool 和 conv2d 大小更改为一维形式......我对 keras 或自动编码器的经验很少,任何人都看到我做错了吗?
谢谢
编辑: 我在新控制台上 运行 时的错误:
ValueError: Error when checking target: expected conv1d_7 to have shape (None, 32, 1) but got array with shape (80000, 64, 1)
这是autoencoder.summary()
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 64, 1) 0
_________________________________________________________________
conv1d_1 (Conv1D) (None, 64, 32) 320
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 16, 32) 0
_________________________________________________________________
conv1d_2 (Conv1D) (None, 16, 16) 4624
_________________________________________________________________
max_pooling1d_2 (MaxPooling1 (None, 4, 16) 0
_________________________________________________________________
conv1d_3 (Conv1D) (None, 4, 8) 1160
_________________________________________________________________
max_pooling1d_3 (MaxPooling1 (None, 1, 8) 0
_________________________________________________________________
conv1d_4 (Conv1D) (None, 1, 8) 584
_________________________________________________________________
up_sampling1d_1 (UpSampling1 (None, 4, 8) 0
_________________________________________________________________
conv1d_5 (Conv1D) (None, 4, 16) 1168
_________________________________________________________________
up_sampling1d_2 (UpSampling1 (None, 16, 16) 0
_________________________________________________________________
conv1d_6 (Conv1D) (None, 8, 32) 4640
_________________________________________________________________
up_sampling1d_3 (UpSampling1 (None, 32, 32) 0
_________________________________________________________________
conv1d_7 (Conv1D) (None, 32, 1) 289
=================================================================
Total params: 12,785
Trainable params: 12,785
Non-trainable params: 0
_________________________________________________________________
由于自动编码器输出应该重构输入,最低要求是它们的维度应该匹配,对吗?
看看你的 autoencoder.summary()
,很容易确认情况并非如此:你的输入是形状 (64,1)
,而你最后一个卷积层的输出 conv1d_7
是 (32,1)
(我们忽略第一个维度中的 None
,因为它们指的是批量大小)。
让我们看看example in the Keras blog你link到(它是一个2D自动编码器,但想法是一样的):
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model
from keras import backend as K
input_img = Input(shape=(28, 28, 1)) # adapt this if using `channels_first` image data format
x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
# at this point the representation is (4, 4, 8) i.e. 128-dimensional
x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
这里是 autoencoder.summary()
在这种情况下的结果:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 28, 28, 1) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 28, 28, 16) 160
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 14, 14, 16) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 14, 14, 8) 1160
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 7, 7, 8) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 7, 7, 8) 584
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 4, 4, 8) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 4, 4, 8) 584
_________________________________________________________________
up_sampling2d_1 (UpSampling2 (None, 8, 8, 8) 0
_________________________________________________________________
conv2d_5 (Conv2D) (None, 8, 8, 8) 584
_________________________________________________________________
up_sampling2d_2 (UpSampling2 (None, 16, 16, 8) 0
_________________________________________________________________
conv2d_6 (Conv2D) (None, 14, 14, 16) 1168
_________________________________________________________________
up_sampling2d_3 (UpSampling2 (None, 28, 28, 16) 0
_________________________________________________________________
conv2d_7 (Conv2D) (None, 28, 28, 1) 145
=================================================================
Total params: 4,385
Trainable params: 4,385
Non-trainable params: 0
很容易确认这里输入和输出的维度(最后一个卷积层conv2d_7
)确实都是(28, 28, 1)
.
因此,summary()
方法是您构建自动编码器时的好帮手;您应该对参数进行试验,直到您确定生成的输出与输入的维度相同。我设法用你的自动编码器做到了这一点,只需将最后一个 UpSampling1D
层的 size
参数从 4 更改为 8:
input_img = Input(shape=(64,1))
x = Conv1D(32, (9), activation='relu', padding='same')(input_img)
x = MaxPooling1D((4), padding='same')(x)
x = Conv1D(16, (9), activation='relu', padding='same')(x)
x = MaxPooling1D((4), padding='same')(x)
x = Conv1D(8, (9), activation='relu', padding='same')(x)
encoded = MaxPooling1D(4, padding='same')(x)
x = Conv1D(8, (9), activation='relu', padding='same')(encoded)
x = UpSampling1D((4))(x)
x = Conv1D(16, (9), activation='relu', padding='same')(x)
x = UpSampling1D((4))(x)
x = Conv1D(32, (9), activation='relu')(x)
x = UpSampling1D((8))(x) ## <-- change here (was 4)
decoded = Conv1D(1, (9), activation='sigmoid', padding='same')(x)
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
在这种情况下,autoencoder.summary()
变为:
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 64, 1) 0
_________________________________________________________________
conv1d_1 (Conv1D) (None, 64, 32) 320
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 16, 32) 0
_________________________________________________________________
conv1d_2 (Conv1D) (None, 16, 16) 4624
_________________________________________________________________
max_pooling1d_2 (MaxPooling1 (None, 4, 16) 0
_________________________________________________________________
conv1d_3 (Conv1D) (None, 4, 8) 1160
_________________________________________________________________
max_pooling1d_3 (MaxPooling1 (None, 1, 8) 0
_________________________________________________________________
conv1d_4 (Conv1D) (None, 1, 8) 584
_________________________________________________________________
up_sampling1d_1 (UpSampling1 (None, 4, 8) 0
_________________________________________________________________
conv1d_5 (Conv1D) (None, 4, 16) 1168
_________________________________________________________________
up_sampling1d_2 (UpSampling1 (None, 16, 16) 0
_________________________________________________________________
conv1d_6 (Conv1D) (None, 8, 32) 4640
_________________________________________________________________
up_sampling1d_3 (UpSampling1 (None, 64, 32) 0
_________________________________________________________________
conv1d_7 (Conv1D) (None, 64, 1) 289
=================================================================
Total params: 12,785
Trainable params: 12,785
Non-trainable params: 0
输入和输出的维度匹配,因为它应该是...