我对 Davies-Bouldin 指数的 python 实施是否正确?

Is my python implementation of the Davies-Bouldin Index correct?

我正在尝试计算 Python 中的 Davies-Bouldin Index

下面是代码尝试重现的步骤。

5 步

  1. 对于每个簇,计算每个点到质心之间的欧氏距离
  2. 对于每个集群,计算这些距离的平均值
  3. 对于每对簇,计算它们质心之间的欧氏距离

然后,

  1. 对于每对簇,计算到它们各自质心的平均距离(在第 2 步计算)的总和,然后除以它们之间的距离(在第 3 步计算)。

最后,

  1. 计算所有这些分区(=所有索引)的平均值以获得整个聚类的 Davies-Bouldin 索引

代码

def daviesbouldin(X, labels, centroids):

    import numpy as np
    from scipy.spatial.distance import pdist, euclidean

    nbre_of_clusters = len(centroids) #Get the number of clusters
    distances = [[] for e in range(nbre_of_clusters)] #Store intra-cluster distances by cluster
    distances_means = [] #Store the mean of these distances
    DB_indexes = [] #Store Davies_Boulin index of each pair of cluster
    second_cluster_idx = [] #Store index of the second cluster of each pair
    first_cluster_idx = 0 #Set index of first cluster of each pair to 0

    # Step 1: Compute euclidean distances between each point of a cluster to their centroid
    for cluster in range(nbre_of_clusters):
        for point in range(X[labels == cluster].shape[0]):
            distances[cluster].append(euclidean(X[labels == cluster][point], centroids[cluster]))

    # Step 2: Compute the mean of these distances
    for e in distances:
        distances_means.append(np.mean(e))

    # Step 3: Compute euclidean distances between each pair of centroid
    ctrds_distance = pdist(centroids) 

    # Tricky step 4: Compute Davies-Bouldin index of each pair of cluster   
    for i, e in enumerate(e for start in range(1, nbre_of_clusters) for e in range(start, nbre_of_clusters)):
        second_cluster_idx.append(e)
        if second_cluster_idx[i-1] == nbre_of_clusters - 1:
            first_cluster_idx += 1
        DB_indexes.append((distances_means[first_cluster_idx] + distances_means[e]) / ctrds_distance[i])

    # Step 5: Compute the mean of all DB_indexes   
    print("DAVIES-BOULDIN Index: %.5f" % np.mean(DB_indexes)) 

参数中:

此外,请注意我使用的是 Python 3

问题 1:计算每对质心之间的欧氏距离是否正确(第 3 步)?

问题 2:我对第 4 步的实施是否正确?

问题 3:我需要归一化簇内和簇间距离吗?


关于步骤 4 的进一步说明

假设我们有 10 个集群。 循环应该计算每对簇的数据库索引。

第一次迭代:

在第二次迭代时:

等等...

以10个集群为例,完整的迭代过程应该是这样的:

intra-cluster distance intra-cluster distance       distance between their
      of cluster:             of cluster:           centroids(storage num):
         0           +             1            /             0
         0           +             2            /             1
         0           +             3            /             2
         0           +             4            /             3
         0           +             5            /             4
         0           +             6            /             5
         0           +             7            /             6
         0           +             8            /             7
         0           +             9            /             8
         1           +             2            /             9
         1           +             3            /             10
         1           +             4            /             11
         1           +             5            /             12
         1           +             6            /             13
         1           +             7            /             14
         1           +             8            /             15
         1           +             9            /             16
         2           +             3            /             17
         2           +             4            /             18
         2           +             5            /             19
         2           +             6            /             20
         2           +             7            /             21
         2           +             8            /             22
         2           +             9            /             23
         3           +             4            /             24
         3           +             5            /             25
         3           +             6            /             26
         3           +             7            /             27
         3           +             8            /             28
         3           +             9            /             29
         4           +             5            /             30
         4           +             6            /             31
         4           +             7            /             32
         4           +             8            /             33
         4           +             9            /             34
         5           +             6            /             35
         5           +             7            /             36
         5           +             8            /             37
         5           +             9            /             38
         6           +             7            /             39
         6           +             8            /             40
         6           +             9            /             41
         7           +             8            /             42
         7           +             9            /             43
         8           +             9            /             44

这里的问题是我不太确定 distances_means 的索引是否与 ctrds_distance 的索引匹配。

换句话说,我不确定计算的第一个簇间距离是否对应于簇 1 和簇 2 之间的距离。计算的第二个簇间距离是否对应于簇 3 和簇之间的距离集群 1... 依此类推,遵循上述模式。

简而言之:恐怕我是将成对的簇内距离除以不对应的簇间距离。

非常欢迎任何帮助!

这是上面的 Davies-Bouldin 指数原始实现的更短、更正后更快的版本。

def DaviesBouldin(X, labels):
    n_cluster = len(np.bincount(labels))
    cluster_k = [X[labels == k] for k in range(n_cluster)]
    centroids = [np.mean(k, axis = 0) for k in cluster_k]
    variances = [np.mean([euclidean(p, centroids[i]) for p in k]) for i, k in enumerate(cluster_k)]
    db = []

    for i in range(n_cluster):
        for j in range(n_cluster):
            if j != i:
                db.append((variances[i] + variances[j]) / euclidean(centroids[i], centroids[j]))

    return(np.max(db) / n_cluster)

回答我自己的问题:

  • 初稿(第 4 步)的反驳是正确的,但不相关
  • 不需要归一化簇内和簇间距离
  • 计算欧氏距离时出错

请注意,您可以找到尝试改进该指数的创新方法,特别是“New Version of Davies-Bouldin Index”,它用柱面距离代替欧氏距离。

感谢您的实施。我只有一个问题:最后一行是否缺少一个分区。在最后一步中,max(db) 的值应除以实施的集群数。

def DaviesBouldin(Daten, DatenLabels):
n_cluster = len(np.bincount(DatenLabels)) 
cluster_k = [Daten[DatenLabels == k] for k in range(n_cluster)] 
centroids = [np.mean(k, axis = 0) for k in cluster_k] 
variances = [np.mean([euclidean(p, centroids[i]) for p in k]) for i, k in enumerate(cluster_k)] # mittlere Entfernung zum jeweiligen Clusterzentrum
db = []

for i in range(n_cluster):
    for j in range(n_cluster):
        if j != i:
            db.append((variances[i] + variances[j]) / euclidean(centroids[i], centroids[j]) / n_cluster)
return(np.max(db))

也许我监督那个部门是因为我是 Python 的新手。但在我的图形中(我在一系列集群上迭代)DB.max 的值在开始时非常低,然后增加。在按集群数量缩放后,图形看起来更好(开始时高 DB.max 值,并随着集群数量的增加而不断下降)。

此致

感谢代码和修改 - 真的帮助我开始了。更短、更快的版本并不完全正确。我对其进行了修改,以正确地平均每个集群最相似集群的分散分数。

原始算法和解释见https://www.researchgate.net/publication/224377470_A_Cluster_Separation_Measure

The DBI is the average of the similarity measures of each cluster with its most similar cluster.

def DaviesBouldin(X, labels):
    n_cluster = len(np.bincount(labels))
    cluster_k = [X[labels == k] for k in range(n_cluster)]
    centroids = [np.mean(k, axis = 0) for k in cluster_k]

    # calculate cluster dispersion
    S = [np.mean([euclidean(p, centroids[i]) for p in k]) for i, k in enumerate(cluster_k)]
    Ri = []

    for i in range(n_cluster):
        Rij = []
        # establish similarity between each cluster and all other clusters
        for j in range(n_cluster):
            if j != i:
                r = (S[i] + S[j]) / euclidean(centroids[i], centroids[j])
                Rij.append(r)
         # select Ri value of most similar cluster
         Ri.append(max(Rij)) 

    # get mean of all Ri values    
    dbi = np.mean(Ri)

    return dbi

这个比下面的代码快 20 倍,所有计算都在 numpy 中完成。

import numpy as np
from scipy.spatial.distance import euclidean, cdist, pdist, squareform

def db_index(X, y):
    """
    Davies-Bouldin index is an internal evaluation method for
    clustering algorithms. Lower values indicate tighter clusters that 
    are better separated.
    """
    # get unique labels
    if y.ndim == 2:
        y = np.argmax(axis=1)
    uniqlbls = np.unique(y)
    n = len(uniqlbls)
    # pre-calculate centroid and sigma
    centroid_arr = np.empty((n, X.shape[1]))
    sigma_arr = np.empty((n,1))
    dbi_arr = np.empty((n,n))
    mask_arr = np.invert(np.eye(n, dtype='bool'))
    for i,k in enumerate(uniqlbls):
        Xk = X[np.where(y==k)[0],...]
        Ak = np.mean(Xk, axis=0)
        centroid_arr[i,...] = Ak
        sigma_arr[i,...] = np.mean(cdist(Xk, Ak.reshape(1,-1)))
    # compute pairwise centroid distances, make diagonal elements non-zero
    centroid_pdist_arr = squareform(pdist(centroid_arr)) + np.eye(n)
    # compute pairwise sigma sums
    sigma_psum_arr = squareform(pdist(sigma_arr, lambda u,v: u+v))
    # divide 
    dbi_arr = np.divide(sigma_psum_arr, centroid_pdist_arr)
    # get mean of max of off-diagonal elements
    dbi_arr = np.where(mask_arr, dbi_arr, 0)
    dbi = np.mean(np.max(dbi_arr, axis=1))
    return dbi


这是一个使用 numpy 1.14、scipy 1.1.0 和 python 3 的实现。计算速度提高不多,但内存占用应该略小。

import numpy as np
from scipy.spatial.distance import euclidean, cdist, pdist, squareform

def db_index(X, y):
    """
    Davies-Bouldin index is an internal evaluation method for
    clustering algorithms. Lower values indicate tighter clusters that 
    are better separated.

    Arguments
    ----------
    X : 2D array (n_samples, embed_dim)
    Vector for each example.

    y : 1D array (n_samples,) or 2D binary array (n_samples, n_classes)
    True labels for each example.

    Returns
    ----------
    dbi : float
        Calculated Davies-Bouldin index.
    """
    # get unique labels
    if y.ndim == 2:
        y = np.argmax(axis=1)
    uniqlbls = np.unique(y)
    n = len(uniqlbls)
    # pre-calculate centroid and sigma
    centroid_arr = np.empty((n, X.shape[1]))
    sigma_arr = np.empty(n)
    for i,k in enumerate(uniqlbls):
        Xk = X[np.where(y==k)[0],...]
        Ak = np.mean(Xk, axis=0)
        centroid_arr[i,...] = Ak
        sigma_arr[i,...] = np.mean(cdist(Xk, Ak.reshape(1,-1)))
    # loop over non-duplicate cluster pairs
    dbi = 0
    for i in range(n):
        max_Rij = 0
        for j in range(n):
            if j != i:
                Rij = np.divide(sigma_arr[i] + sigma_arr[j], 
                                euclidean(centroid_arr[i,...], centroid_arr[j,...]))
                if Rij > max_Rij:
                    max_Rij = Rij
        dbi += max_Rij
    return dbi/n