使用 RNN/LSTM 连续生成文本
Continiously text generation with RNN/LSTM
我发现了很多使用 LSTM 生成文本的例子
这是其中的一个:
# Load Larger LSTM network and generate text
import sys
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM
from keras.callbacks import ModelCheckpoint
from keras.utils import np_utils
# load ascii text and covert to lowercase
filename = "wonderland.txt"
raw_text = open(filename).read()
raw_text = raw_text.lower()
# create mapping of unique chars to integers, and a reverse mapping
chars = sorted(list(set(raw_text)))
char_to_int = dict((c, i) for i, c in enumerate(chars))
int_to_char = dict((i, c) for i, c in enumerate(chars))
# summarize the loaded data
n_chars = len(raw_text)
n_vocab = len(chars)
print "Total Characters: ", n_chars
print "Total Vocab: ", n_vocab
# prepare the dataset of input to output pairs encoded as integers
seq_length = 100
dataX = []
dataY = []
for i in range(0, n_chars - seq_length, 1):
seq_in = raw_text[i:i + seq_length]
seq_out = raw_text[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
n_patterns = len(dataX)
print "Total Patterns: ", n_patterns
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (n_patterns, seq_length, 1))
# normalize
X = X / float(n_vocab)
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# define the LSTM model
model = Sequential()
model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(256))
model.add(Dropout(0.2))
model.add(Dense(y.shape[1], activation='softmax'))
# load the network weights
filename = "weights-improvement-47-1.2219-bigger.hdf5"
model.load_weights(filename)
model.compile(loss='categorical_crossentropy', optimizer='adam')
# pick a random seed
start = numpy.random.randint(0, len(dataX)-1)
pattern = dataX[start]
print "Seed:"
print "\"", ''.join([int_to_char[value] for value in pattern]), "\""
# generate characters
for i in range(1000):
x = numpy.reshape(pattern, (1, len(pattern), 1))
x = x / float(n_vocab)
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
sys.stdout.write(result)
pattern.append(index)
pattern = pattern[1:len(pattern)]
print "\nDone."
网络训练后按预期工作:随机播种后生成一些文本。但是它进入了死循环,所以生成的文本片段一次又一次地重复。我知道它应该以这种方式工作,因为我们将生成的文本的最后一部分输入网络,因此它会根据先前的数据预测序列。
但我想让网络连续生成不同的文本。怎么做?也许我需要多次制作随机种子,或者最好使用经过不同训练的第二个网络,以便 2 个网络可以将输出作为种子互相提供?
使用不同的 sampling strategy.
现在你正在使用贪婪搜索,你总是选择最有可能的字符作为下一个字符。
您可以改用随机抽样,根据您的网络产生的概率来选择新字符。为了更好地控制采样过程,通常会引入 temperature parameter。这使您可以控制生成的文本的多样性。
我发现了很多使用 LSTM 生成文本的例子 这是其中的一个:
# Load Larger LSTM network and generate text
import sys
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM
from keras.callbacks import ModelCheckpoint
from keras.utils import np_utils
# load ascii text and covert to lowercase
filename = "wonderland.txt"
raw_text = open(filename).read()
raw_text = raw_text.lower()
# create mapping of unique chars to integers, and a reverse mapping
chars = sorted(list(set(raw_text)))
char_to_int = dict((c, i) for i, c in enumerate(chars))
int_to_char = dict((i, c) for i, c in enumerate(chars))
# summarize the loaded data
n_chars = len(raw_text)
n_vocab = len(chars)
print "Total Characters: ", n_chars
print "Total Vocab: ", n_vocab
# prepare the dataset of input to output pairs encoded as integers
seq_length = 100
dataX = []
dataY = []
for i in range(0, n_chars - seq_length, 1):
seq_in = raw_text[i:i + seq_length]
seq_out = raw_text[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
n_patterns = len(dataX)
print "Total Patterns: ", n_patterns
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (n_patterns, seq_length, 1))
# normalize
X = X / float(n_vocab)
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# define the LSTM model
model = Sequential()
model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(256))
model.add(Dropout(0.2))
model.add(Dense(y.shape[1], activation='softmax'))
# load the network weights
filename = "weights-improvement-47-1.2219-bigger.hdf5"
model.load_weights(filename)
model.compile(loss='categorical_crossentropy', optimizer='adam')
# pick a random seed
start = numpy.random.randint(0, len(dataX)-1)
pattern = dataX[start]
print "Seed:"
print "\"", ''.join([int_to_char[value] for value in pattern]), "\""
# generate characters
for i in range(1000):
x = numpy.reshape(pattern, (1, len(pattern), 1))
x = x / float(n_vocab)
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
sys.stdout.write(result)
pattern.append(index)
pattern = pattern[1:len(pattern)]
print "\nDone."
网络训练后按预期工作:随机播种后生成一些文本。但是它进入了死循环,所以生成的文本片段一次又一次地重复。我知道它应该以这种方式工作,因为我们将生成的文本的最后一部分输入网络,因此它会根据先前的数据预测序列。
但我想让网络连续生成不同的文本。怎么做?也许我需要多次制作随机种子,或者最好使用经过不同训练的第二个网络,以便 2 个网络可以将输出作为种子互相提供?
使用不同的 sampling strategy.
现在你正在使用贪婪搜索,你总是选择最有可能的字符作为下一个字符。
您可以改用随机抽样,根据您的网络产生的概率来选择新字符。为了更好地控制采样过程,通常会引入 temperature parameter。这使您可以控制生成的文本的多样性。