如何使用复杂度为 O(n) 的 Javascript 找到第 n 个斐波那契数
How to find nth Fibonacci number using Javascript with O(n) complexity
真的很努力想弄清楚如何解决这个问题。问题是使用 javascript.
找到具有 O(n) 复杂度的第 n 个斐波那契数
我找到了很多关于如何使用 C++ 或 Python 解决此问题的精彩文章,但每次我尝试实现相同的逻辑时,我都以 Maximum call stack size exceeded
.[=14= 告终]
Python
中的示例代码
MAX = 1000
# Create an array for memoization
f = [0] * MAX
# Returns n'th fuibonacci number using table f[]
def fib(n) :
# Base cases
if (n == 0) :
return 0
if (n == 1 or n == 2) :
f[n] = 1
return (f[n])
# If fib(n) is already computed
if (f[n]) :
return f[n]
if( n & 1) :
k = (n + 1) // 2
else :
k = n // 2
# Applyting above formula [Note value n&1 is 1
# if n is odd, else 0.
if((n & 1) ) :
f[n] = (fib(k) * fib(k) + fib(k-1) * fib(k-1))
else :
f[n] = (2*fib(k-1) + fib(k))*fib(k)
return f[n]
// # Driver code
// n = 9
// print(fib(n))
然后尝试将其移植到 Javascript
const MAX = 1000;
let f = Array(MAX).fill(0);
let k;
const fib = (n) => {
if (n == 0) {
return 0;
}
if (n == 1 || n == 2) {
f[n] = 1;
return f[n]
}
if (f[n]) {
return f[n]
}
if (n & 1) {
k = Math.floor(((n + 1) / 2))
} else {
k = Math.floor(n / 2)
}
if ((n & 1)) {
f[n] = (fib(k) * fib(k) + fib(k-1) * fib(k-1))
} else {
f[n] = (2*fib(k-1) + fib(k))*fib(k)
}
return f[n]
}
console.log(fib(9))
这显然行不通。在 Javascript 中,这以无限循环结束。那么你如何使用 Javascript?
来解决这个问题?
提前致谢
您可以从下到上迭代(如尾递归):
var fib_tail = function(n){
if(n == 0)
return 0;
if(n == 1 || n == 2)
return 1;
var prev_1 = 1, prev_2 = 1, current;
// O(n)
for(var i = 3; i <= n; i++)
{
current = prev_1 + prev_2;
prev_1 = prev_2;
prev_2 = current;
}
return current;
}
console.log(fib_tail(1000))
只需使用两个变量和一个对提供的数字进行倒计时的循环。
function fib(n){
let [a, b] = [0, 1];
while (--n > 0) {
[a, b] = [b, a+b];
}
return b;
}
console.log(fib(10));
问题与 k
变量的范围有关。它必须在函数内部:
const fib = (n) => {
let k;
您可以在这里找到更多好的实现 list
这里有一个更简单的方法,使用迭代或递归方法:
function FibSmartRecursive(n, a = 0, b = 1) {
return n > 1 ? FibSmartRecursive(n-1, b, a+b) : a;
}
function FibIterative(n) {
if (n < 2)
return n;
var a = 0, b = 1, c = 1;
while (--n > 1) {
a = b;
b = c;
c = a + b;
}
return c;
}
function FibMemoization(n, seenIt = {}) {//could use [] as well here
if (n < 2)
return n;
if (seenIt[n])
return seenIt[n];
return seenIt[n] = FibMemoization(n-1, seenIt) + FibMemoization(n-2, seenIt);
}
console.log(FibMemoization(25)); //75025
console.log(FibIterative(25)); //75025
console.log(FibSmartRecursive(25)); //75025
斐波那契数 O(n) 时间和 O(1) space 复杂度:
function fib(n) {
let prev = 0, next =1;
if(n < 0)
throw 'not a valid value';
if(n === prev || n === next)
return n;
while(n >= 2) {
[prev, next] = [next, prev+next];
n--;
}
return next;
}
你可以不用递归使用循环来解决这个问题,运行时 O(n):
function nthFibo(n) {
// Return the n-th number in the Fibonacci Sequence
const fibSeq = [0, 1]
if (n < 3) return seq[n - 1]
let i = 1
while (i < n - 1) {
seq.push(seq[i - 1] + seq[i])
i += 1
}
return seq.slice(-1)[0]
}
真的很努力想弄清楚如何解决这个问题。问题是使用 javascript.
找到具有 O(n) 复杂度的第 n 个斐波那契数我找到了很多关于如何使用 C++ 或 Python 解决此问题的精彩文章,但每次我尝试实现相同的逻辑时,我都以 Maximum call stack size exceeded
.[=14= 告终]
Python
中的示例代码MAX = 1000
# Create an array for memoization
f = [0] * MAX
# Returns n'th fuibonacci number using table f[]
def fib(n) :
# Base cases
if (n == 0) :
return 0
if (n == 1 or n == 2) :
f[n] = 1
return (f[n])
# If fib(n) is already computed
if (f[n]) :
return f[n]
if( n & 1) :
k = (n + 1) // 2
else :
k = n // 2
# Applyting above formula [Note value n&1 is 1
# if n is odd, else 0.
if((n & 1) ) :
f[n] = (fib(k) * fib(k) + fib(k-1) * fib(k-1))
else :
f[n] = (2*fib(k-1) + fib(k))*fib(k)
return f[n]
// # Driver code
// n = 9
// print(fib(n))
然后尝试将其移植到 Javascript
const MAX = 1000;
let f = Array(MAX).fill(0);
let k;
const fib = (n) => {
if (n == 0) {
return 0;
}
if (n == 1 || n == 2) {
f[n] = 1;
return f[n]
}
if (f[n]) {
return f[n]
}
if (n & 1) {
k = Math.floor(((n + 1) / 2))
} else {
k = Math.floor(n / 2)
}
if ((n & 1)) {
f[n] = (fib(k) * fib(k) + fib(k-1) * fib(k-1))
} else {
f[n] = (2*fib(k-1) + fib(k))*fib(k)
}
return f[n]
}
console.log(fib(9))
这显然行不通。在 Javascript 中,这以无限循环结束。那么你如何使用 Javascript?
来解决这个问题?提前致谢
您可以从下到上迭代(如尾递归):
var fib_tail = function(n){
if(n == 0)
return 0;
if(n == 1 || n == 2)
return 1;
var prev_1 = 1, prev_2 = 1, current;
// O(n)
for(var i = 3; i <= n; i++)
{
current = prev_1 + prev_2;
prev_1 = prev_2;
prev_2 = current;
}
return current;
}
console.log(fib_tail(1000))
只需使用两个变量和一个对提供的数字进行倒计时的循环。
function fib(n){
let [a, b] = [0, 1];
while (--n > 0) {
[a, b] = [b, a+b];
}
return b;
}
console.log(fib(10));
问题与 k
变量的范围有关。它必须在函数内部:
const fib = (n) => {
let k;
您可以在这里找到更多好的实现 list
这里有一个更简单的方法,使用迭代或递归方法:
function FibSmartRecursive(n, a = 0, b = 1) {
return n > 1 ? FibSmartRecursive(n-1, b, a+b) : a;
}
function FibIterative(n) {
if (n < 2)
return n;
var a = 0, b = 1, c = 1;
while (--n > 1) {
a = b;
b = c;
c = a + b;
}
return c;
}
function FibMemoization(n, seenIt = {}) {//could use [] as well here
if (n < 2)
return n;
if (seenIt[n])
return seenIt[n];
return seenIt[n] = FibMemoization(n-1, seenIt) + FibMemoization(n-2, seenIt);
}
console.log(FibMemoization(25)); //75025
console.log(FibIterative(25)); //75025
console.log(FibSmartRecursive(25)); //75025
斐波那契数 O(n) 时间和 O(1) space 复杂度:
function fib(n) {
let prev = 0, next =1;
if(n < 0)
throw 'not a valid value';
if(n === prev || n === next)
return n;
while(n >= 2) {
[prev, next] = [next, prev+next];
n--;
}
return next;
}
你可以不用递归使用循环来解决这个问题,运行时 O(n):
function nthFibo(n) {
// Return the n-th number in the Fibonacci Sequence
const fibSeq = [0, 1]
if (n < 3) return seq[n - 1]
let i = 1
while (i < n - 1) {
seq.push(seq[i - 1] + seq[i])
i += 1
}
return seq.slice(-1)[0]
}