名称 'DataFrameSelector' 未定义
name 'DataFrameSelector' is not defined
我目前正在阅读 "Hands-On Machine Learning with Scikit-Learn & TensorFlow"。当我尝试重新创建转换管道代码时出现错误。我该如何解决这个问题?
代码:
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
num_pipeline = Pipeline([('imputer', Imputer(strategy = "median")),
('attribs_adder', CombinedAttributesAdder()),
('std_scaler', StandardScaler()),
])
housing_num_tr = num_pipeline.fit_transform(housing_num)
from sklearn.pipeline import FeatureUnion
num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]
num_pipeline = Pipeline([
('selector', DataFrameSelector(num_attribs)),
('imputer', Imputer(strategy = "median")),
('attribs_adder', CombinedAttributesAdder()),
('std_scaler', StandardScaler()),
])
cat_pipeline = Pipeline([('selector', DataFrameSelector(cat_attribs)),
('label_binarizer', LabelBinarizer()),
])
full_pipeline = FeatureUnion(transformer_list = [("num_pipeline", num_pipeline),
("cat_pipeline", cat_pipeline),
])
# And we can now run the whole pipeline simply:
housing_prepared = full_pipeline.fit_transform(housing)
housing_prepared
错误:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-350-3a4a39e5bc1c> in <module>()
43
44 num_pipeline = Pipeline([
---> 45 ('selector', DataFrameSelector(num_attribs)),
46 ('imputer', Imputer(strategy = "median")),
47 ('attribs_adder', CombinedAttributesAdder()),
NameError: name 'DataFrameSelector' is not defined
未找到 DataFrameSelector
,需要导入。它不是 sklearn
的一部分,但 sklearn-features:
中有同名的东西
from sklearn_features.transformers import DataFrameSelector
(DOCS)
from sklearn.base import BaseEstimator, TransformerMixin
class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self, attribute_names):
self.attribute_names=attribute_names
def fit(self, X, y=None):
return self
def transform(self, X):
return X[self.attribute_names].values
这应该有效。
from sklearn.pipeline import FeatureUnion
class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self, attribute_names):
self.attribute_names = attribute_names
def fit(self, X, y=None):
return self
def transform(self, X):
return X[self.attribute_names].values
可能有用。
如果您正在使用 Sklearn 和 Tensorflow 学习机器学习之手,
它就在下一页,一个定制的 Dataframe 生成器
from sklearn.pipeline import FeatureUnion
class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self, attribute_names):
self.attribute_names = attribute_names
def fit(self, X, y=None):
return self
def transform(self, X):
return X[self.attribute_names].values
您似乎正在研究 California Housing Price Predictions
书中的项目 Hands-On Machine Learning with Scikit-learn and TensorFlow
。
错误
NameError: name 'DataFrameSelector' is not defined
出现是因为sklearn中没有DataFrameSelector
转换器。要克服此错误,您需要为此编写自己的自定义转换器。
在本书中,您可以在下一页找到 DataFrameSelector
转换器代码,但我也会在下面复制此代码。
from sklearn.base import BaseEstimator, TransformerMixin
class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self, attribute_names):
self.attribute_names = attribute_names
def fit(self, X, y=None):
return self
def transform(self, X):
return X[self.attribute_names].values
BaseEstimator
和TransformerMixin
classes用于继承fit()
、transform()
和fit_transform()
方法。
现在还有另一个 class DataFrameMapper
也可以在 sklearn-pandas 中使用,与 objective 类似。
您可以从以下 link 中找到有关此 class 的详细信息:
DataFrameMapper
您应该在当前代码单元格之前插入一个单元格,然后键入以下代码
from sklearn.base import BaseEstimator, TransformerMixin
class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self, attribute_names):
self.attribute_names = attribute_names
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
return X[self.attribute_names].values
通过这种方式,您的 DataFrameSelector class 将被预先定义
我目前正在阅读 "Hands-On Machine Learning with Scikit-Learn & TensorFlow"。当我尝试重新创建转换管道代码时出现错误。我该如何解决这个问题?
代码:
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
num_pipeline = Pipeline([('imputer', Imputer(strategy = "median")),
('attribs_adder', CombinedAttributesAdder()),
('std_scaler', StandardScaler()),
])
housing_num_tr = num_pipeline.fit_transform(housing_num)
from sklearn.pipeline import FeatureUnion
num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]
num_pipeline = Pipeline([
('selector', DataFrameSelector(num_attribs)),
('imputer', Imputer(strategy = "median")),
('attribs_adder', CombinedAttributesAdder()),
('std_scaler', StandardScaler()),
])
cat_pipeline = Pipeline([('selector', DataFrameSelector(cat_attribs)),
('label_binarizer', LabelBinarizer()),
])
full_pipeline = FeatureUnion(transformer_list = [("num_pipeline", num_pipeline),
("cat_pipeline", cat_pipeline),
])
# And we can now run the whole pipeline simply:
housing_prepared = full_pipeline.fit_transform(housing)
housing_prepared
错误:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-350-3a4a39e5bc1c> in <module>()
43
44 num_pipeline = Pipeline([
---> 45 ('selector', DataFrameSelector(num_attribs)),
46 ('imputer', Imputer(strategy = "median")),
47 ('attribs_adder', CombinedAttributesAdder()),
NameError: name 'DataFrameSelector' is not defined
DataFrameSelector
,需要导入。它不是 sklearn
的一部分,但 sklearn-features:
from sklearn_features.transformers import DataFrameSelector
(DOCS)
from sklearn.base import BaseEstimator, TransformerMixin
class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self, attribute_names):
self.attribute_names=attribute_names
def fit(self, X, y=None):
return self
def transform(self, X):
return X[self.attribute_names].values
这应该有效。
from sklearn.pipeline import FeatureUnion
class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self, attribute_names):
self.attribute_names = attribute_names
def fit(self, X, y=None):
return self
def transform(self, X):
return X[self.attribute_names].values
可能有用。
如果您正在使用 Sklearn 和 Tensorflow 学习机器学习之手, 它就在下一页,一个定制的 Dataframe 生成器
from sklearn.pipeline import FeatureUnion
class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self, attribute_names):
self.attribute_names = attribute_names
def fit(self, X, y=None):
return self
def transform(self, X):
return X[self.attribute_names].values
您似乎正在研究 California Housing Price Predictions
书中的项目 Hands-On Machine Learning with Scikit-learn and TensorFlow
。
错误
NameError: name 'DataFrameSelector' is not defined
出现是因为sklearn中没有DataFrameSelector
转换器。要克服此错误,您需要为此编写自己的自定义转换器。
在本书中,您可以在下一页找到 DataFrameSelector
转换器代码,但我也会在下面复制此代码。
from sklearn.base import BaseEstimator, TransformerMixin
class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self, attribute_names):
self.attribute_names = attribute_names
def fit(self, X, y=None):
return self
def transform(self, X):
return X[self.attribute_names].values
BaseEstimator
和TransformerMixin
classes用于继承fit()
、transform()
和fit_transform()
方法。
现在还有另一个 class DataFrameMapper
也可以在 sklearn-pandas 中使用,与 objective 类似。
您可以从以下 link 中找到有关此 class 的详细信息:
DataFrameMapper
您应该在当前代码单元格之前插入一个单元格,然后键入以下代码
from sklearn.base import BaseEstimator, TransformerMixin
class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self, attribute_names):
self.attribute_names = attribute_names
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
return X[self.attribute_names].values
通过这种方式,您的 DataFrameSelector class 将被预先定义