跨多进程共享基于异步等待协程的复杂对象

Share async-await coroutine based complex object across multiprocess

我知道一般来说,对象不应该在多进程之间共享以及由此产生的问题。但是我的要求是必须这样做。

我有一个复杂的对象,里面有所有漂亮的协程 async-await。 运行 在此对象上的 运行 长进程的函数在其自身的单独进程中。现在,我想在主进程中 运行 一个 IPython shell 并在这个复杂的对象上操作,而那个长 运行ning 进程在另一个进程中 运行ning过程。

为了跨进程共享这个复杂的对象,我尝试了在 SO 上遇到的多处理 BaseManager 方法:

import multiprocessing
import multiprocessing.managers as m


class MyManager(m.BaseManager):
    pass

MyManager.register('complex_asynio_based_class', complex_asynio_based_class)
manager = MyManager()
manager.start()
c = manager.complex_asynio_based_class()

process = multiprocessing.Process(
     target=long_running_process,
     args=(c,),
)

但这给出了错误:

Unserializable message: Traceback (most recent call last):
  File "/usr/3.6/lib/python3.6/multiprocessing/managers.py", line 283, in serve_client
    send(msg)
  File "/usr/3.6/lib/python3.6/multiprocessing/connection.py", line 206, in send
    self._send_bytes(_ForkingPickler.dumps(obj))
  File "/usr/3.6/lib/python3.6/multiprocessing/reduction.py", line 51, in dumps
    cls(buf, protocol).dump(obj)
TypeError: can't pickle coroutine objects

它不起作用,因为对象中有协程。我想不出更好的解决方案来让它工作,我一直坚持下去。

如果不是 Python,我会在 运行ning 进程中生成一个线程,并且仍然能够对其进行操作。

如果我没记错的话,这应该是多进程应用程序的常见模式 运行 后台进程和仅对其执行一些只读操作的主进程,就像我的情况一样,并且不修改它。我想知道一般是怎么做的?

如何在多进程之间共享无法拾取的复杂对象?

运行 协程无法在进程之间自动共享,因为协程在拥有异步 class 的进程中的特定事件循环内运行。协同程序的状态无法被 pickle,即使可以,它在事件循环的上下文之外也没有意义。

您可以为异步 class 创建一个基于回调的适配器,每个协程方法都由具有 "start doing X and call this function when done" 语义的基于回调的方法表示。如果回调是多处理感知的,则可以从其他进程调用这些操作。然后,您可以在 each 进程中启动一个事件循环,并在代理的基于回调的调用上创建一个协程外观。

例如,考虑一个简单的异步 class:

class Async:
    async def repeat(self, n, s):
        for i in range(n):
            print(s, i, os.getpid())
            await asyncio.sleep(.2)
        return s

基于回调的适配器可以使用 public asyncio API 将 repeat 协程转换为 classic 异步函数 JavaScript "callback hell" 风格:

class CallbackAdapter:
    def repeat_start(self, n, s, on_success):
        fut = asyncio.run_coroutine_threadsafe(
            self._async.repeat(n, s), self._loop)
        # Once the coroutine is done, notify the caller.
        fut.add_done_callback(lambda _f: on_success(fut.result()))

(可以自动转换,上面手工写的代码只是概念。)

CallbackAdapter 可以注册到多处理,因此不同的进程可以通过多处理提供的代理启动适配器的方法(以及因此启动原始异步协程)。这只要求作为 on_success 传递的回调是多处理友好的。

作为最后一步,可以绕一圈,为基于回调的 API (!) 创建一个异步适配器,在另一个进程中启动一个事件循环,并利用异步和 async def。这个适配器对适配器 class 将运行一个功能齐全的 repeat 协程,它可以有效地代理原始 Async.repeat 协程,而无需尝试 pickle 协程状态。

下面是上述方法的示例实现:

import asyncio, multiprocessing.managers, threading, os

class Async:
    # The async class we are bridging.  This class is unaware of multiprocessing
    # or of any of the code that follows.
    async def repeat(self, n, s):
        for i in range(n):
            print(s, i, 'pid', os.getpid())
            await asyncio.sleep(.2)
        return s


def start_asyncio_thread():
    # Since the manager controls the main thread, we have to spin up the event
    # loop in a dedicated thread and use asyncio.run_coroutine_threadsafe to
    # submit stuff to the loop.
    setup_done = threading.Event()
    loop = None
    def loop_thread():
        nonlocal loop
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        setup_done.set()
        loop.run_forever()
    threading.Thread(target=loop_thread).start()
    setup_done.wait()
    return loop

class CallbackAdapter:
    _loop = None

    # the callback adapter to the async class, also running in the
    # worker process
    def __init__(self, obj):
        self._async = obj
        if CallbackAdapter._loop is None:
            CallbackAdapter._loop = start_asyncio_thread()

    def repeat_start(self, n, s, on_success):
        # Submit a coroutine to the event loop and obtain a Task/Future.  This
        # is normally done with loop.create_task, but repeat_start will be
        # called from the main thread, owned by the multiprocessng manager,
        # while the event loop will run in a separate thread.
        future = asyncio.run_coroutine_threadsafe(
            self._async.repeat(n, s), self._loop)
        # Once the coroutine is done, notify the caller.
        # We could propagate exceptions by accepting an additional on_error
        # callback, and nesting fut.result() in a try/except that decides
        # whether to call on_success or on_error.
        future.add_done_callback(lambda _f: on_success(future.result()))


def remote_event_future(manager):
    # Return a function/future pair that can be used to locally monitor an
    # event in another process.
    #
    # The returned function and future have the following property: when the
    # function is invoked, possibly in another process, the future completes.
    # The function can be passed as a callback argument to a multiprocessing
    # proxy object and therefore invoked by a different process.
    loop = asyncio.get_event_loop()
    result_pipe = manager.Queue()
    future = loop.create_future()
    def _wait_for_remote():
        result = result_pipe.get()
        loop.call_soon_threadsafe(future.set_result, result)
    t = threading.Thread(target=_wait_for_remote)
    t.start()
    return result_pipe.put, future


class AsyncAdapter:
    # The async adapter for a callback-based API, e.g. the CallbackAdapter.
    # Designed to run in a different process and communicate to the callback
    # adapter via a multiprocessing proxy.
    def __init__(self, cb_proxy, manager):
        self._cb = cb_proxy
        self._manager = manager

    async def repeat(self, n, s):
        set_result, future = remote_event_future(self._manager)
        self._cb.repeat_start(n, s, set_result)
        return await future


class CommManager(multiprocessing.managers.SyncManager):
    pass

CommManager.register('Async', Async)
CommManager.register('CallbackAdapter', CallbackAdapter)


def get_manager():
    manager = CommManager()
    manager.start()
    return manager

def other_process(manager, cb_proxy):
    print('other_process (pid %d)' % os.getpid())
    aadapt = AsyncAdapter(cb_proxy, manager)
    loop = asyncio.get_event_loop()
    # Create two coroutines printing different messages, and gather their
    # results.
    results = loop.run_until_complete(asyncio.gather(
        aadapt.repeat(3, 'message A'),
        aadapt.repeat(2, 'message B')))
    print('coroutine results (pid %d): %s' % (os.getpid(), results))
    print('other_process (pid %d) done' % os.getpid())

def start_other_process(loop, manager, async_proxy):
    cb_proxy = manager.CallbackAdapter(async_proxy)
    other = multiprocessing.Process(target=other_process,
                                    args=(manager, cb_proxy,))
    other.start()
    return other

def main():
    loop = asyncio.get_event_loop()
    manager = get_manager()
    async_proxy = manager.Async()
    # Create two external processes that drive coroutines in our event loop.
    # Note that all messages are printed with the same PID.
    start_other_process(loop, manager, async_proxy)
    start_other_process(loop, manager, async_proxy)
    loop.run_forever()

if __name__ == '__main__':
    main()

代码在 Python 3.5 上运行正常,但由于 a bug in multiprocessing.

而在 3.6 和 3.7 上运行失败

我使用 multiprocessing 模块和 asyncio 模块已经有一段时间了。

您不在进程之间共享对象。您在一个进程中创建一个对象(引用),return 一个代理对象并与其他进程共享。其他进程使用代理对象来调用引用对象的方法。

在您的代码中,引用对象是 complex_asynio_based_class 实例。

这是您可以参考的愚蠢代码。主线程是单个异步循环 运行 UDP 服务器和其他异步操作。长 运行 过程简单地检查循环状态。

import multiprocessing
import multiprocessing.managers as m
import asyncio 
import logging
import time 

logging.basicConfig(filename="main.log", level=logging.DEBUG) 

class MyManager(m.BaseManager):
    pass

class sinkServer(asyncio.Protocol):


    def connection_made(self, transport):
        self.transport = transport

    def datagram_received(self, data, addr):
        message = data.decode()
        logging.info('Data received: {!r}'.format(message))


class complex_asynio_based_class:

    def __init__(self, addr=('127.0.0.1', '8080')):
        self.loop = asyncio.new_event_loop() 
        listen = self.loop.create_datagram_endpoint(sinkServer, local_addr=addr,
                    reuse_address=True, reuse_port=True)
        self.loop.run_until_complete(listen)
        for name, delay in zip("abcdef", (1,2,3,4,5,6)):
            self.loop.run_until_complete(self.slow_op(name, delay))

    def run(self):
        self.loop.run_forever() 

    def stop(self):
        self.loop.stop() 

    def is_running(self):
        return self.loop.is_running() 

    async def slow_op(self, name, delay):
        logging.info("my name: {}".format(name))
        asyncio.sleep(delay)

def long_running_process(co):
    logging.debug('address: {!r}'.format(co))
    logging.debug("status: {}".format(co.is_running()))
    time.sleep(6)
    logging.debug("status: {}".format(co.is_running()))

MyManager.register('complex_asynio_based_class', complex_asynio_based_class)
manager = MyManager()
manager.start()
c = manager.complex_asynio_based_class()

process = multiprocessing.Process(
     target=long_running_process,
     args=(c,),
)
process.start()

c.run()  #run the loop