了解使基于 class 的装饰器支持实例方法的技术

Understanding a technique to make class-based decorators support instance methods

我最近在 Python 装饰器库的 memoized 装饰器中发现了一项技术,它允许它支持实例方法:

import collections
import functools


class memoized(object):
    '''Decorator. Caches a function's return value each time it is called.
    If called later with the same arguments, the cached value is returned
    (not reevaluated).
    '''
    def __init__(self, func):
        self.func = func
        self.cache = {}

    def __call__(self, *args):
        if not isinstance(args, collections.Hashable):
        # uncacheable. a list, for instance.
        # better to not cache than blow up.
            return self.func(*args)
        if args in self.cache:
            return self.cache[args]
        else:
            value = self.func(*args)
            self.cache[args] = value
            return value

    def __repr__(self):
        '''Return the function's docstring.'''
        return self.func.__doc__

    def __get__(self, obj, objtype):
        '''Support instance methods.'''
        return functools.partial(self.__call__, obj)

__get__ 方法是,如文档字符串中所述,其中 'magic happens' 使装饰器支持实例方法。以下是一些表明它有效的测试:

import pytest

def test_memoized_function():
    @memoized
    def fibonacci(n):
        "Return the nth fibonacci number."
        if n in (0, 1):
            return n
        return fibonacci(n-1) + fibonacci(n-2)

    assert fibonacci(12) == 144

def test_memoized_instance_method():
    class Dummy(object):
        @memoized
        def fibonacci(self, n):
            "Return the nth fibonacci number."
            if n in (0, 1):
                return n
            return self.fibonacci(n-1) + self.fibonacci(n-2)            

    assert Dummy().fibonacci(12) == 144

if __name__ == "__main__":
    pytest.main([__file__])

我想了解的是:这项技术究竟是如何工作的?它似乎非常普遍地适用于基于 class 的装饰器,我在对 Is it possible to numpy.vectorize an instance method? 的回答中应用了它。

到目前为止,我已经通过注释掉 __get__ 方法并在 else 子句之后放入调试器来对此进行调查。 self.func 似乎是这样的,每当您尝试使用数字作为输入调用它时,它都会引发 TypeError

> /Users/kurtpeek/Documents/Scratch/memoize_fibonacci.py(24)__call__()
     23                         import ipdb; ipdb.set_trace()
---> 24                         value = self.func(*args)
     25                         self.cache[args] = value

ipdb> self.func
<function Dummy.fibonacci at 0x10426f7b8>
ipdb> self.func(0)
*** TypeError: fibonacci() missing 1 required positional argument: 'n'

正如我从 https://docs.python.org/3/reference/datamodel.html#object.get 中了解到的那样,定义您自己的 __get__ 方法会以某种方式覆盖您(在本例中)调用 self.func 时发生的事情,但我正在努力将这个例子的抽象文档。谁能一步步解释这个?

据我所知,当你使用描述符来修饰一个实例方法(实际上是一个属性)时,它定义了如何setgetdelete 这个属性。有个ref.

因此在您的示例中,memoized__get__ 定义了如何获取属性 fibonacci。在 __get__ 中,它将 obj 传递给 self.__call__,其中 obj 是实例。而支持实例方法的关键是填写argument self.

所以流程是:

假设 Dummy 有一个实例 dummy。当您访问 dummy 的属性 fibonacci 时,因为它已被 memoized 修饰。属性 fibonacci 的值由 memoized.__get__ 返回。 __get__ 接受两个参数,一个是调用实例(这里是 dummy),另一个是它的类型。 memoized.__get__ 将实例填充到 self.__call__ 以便在原始方法 fibonacci.

中填充 self 参数

为了更好地理解描述符,有一个 example:

class RevealAccess(object):
    """A data descriptor that sets and returns values
       normally and prints a message logging their access.
    """

    def __init__(self, initval=None, name='var'):
        self.val = initval
        self.name = name

    def __get__(self, obj, objtype):
        print('Retrieving', self.name)
        return self.val

    def __set__(self, obj, val):
        print('Updating', self.name)
        self.val = val

>>> class MyClass(object):
...     x = RevealAccess(10, 'var "x"')
...     y = 5
...
>>> m = MyClass()
>>> m.x
Retrieving var "x"
10
>>> m.x = 20
Updating var "x"
>>> m.x
Retrieving var "x"
20
>>> m.y
5