在 sklearn 中对腌制数据进行预测

Performing prediction in sklearn on pickled data

我正在尝试通过在 newsgroup20 数据集上进行实验来学习。我的训练模型工作正常,预测部分是我遇到问题的地方。现在我要做的是将训练模型(使用泡菜)保存在一个函数中,并在另一个函数中对泡菜数据进行预测。我找到的所有教程都告诉我如何保存和加载 pickle 文件,但没有告诉我如何提取 X_train 和 y_train。如果有人能提供帮助,那就太好了。这是我的代码

def classifier(): 
    twenty_train = fetch_20newsgroups(subset='train', shuffle=True, random_state=42)
    X_train, X_test, y_train, y_test = train_test_split(twenty_train.data, twenty_train.target, test_size=0.4, random_state=0)

    naive_clf = Pipeline([('vect', CountVectorizer()),
                         ('tfidf', TfidfTransformer()),
                         ('clf', MultinomialNB()),
    ])
    naive_clf.fit(X_train, y_train)  
    filename = 'finalized_model.sav'
    pickle.dump(naive_clf, open(filename, 'wb'))


def predictions(): # need help in first 3 lines and last print statement

    loaded_model = pickle.load(open('finalized_model.sav', 'rb'))
    result = loaded_model.score(X_test, y_test)
    print(result)

    #parsing my file as string for prediction(works fine)
    with open("/home/ubuntu/Desktop/text_classifier/dataset/predict/file,txt", "r") as myfile:
        file=myfile.readlines()
        file = ''.join(file)

    print('belongs to class {} according to naive bayes'.format(twenty_train.target_names[loaded_model.predict([file])[0]]))`

当您使用 pickle 保存模型时,您只保存模型本身,而不保存用于训练的数据。所以如果要用pickle加载数据,需要单独存进去。例如:

data = {'train': X_train, 'target': y_train}
with open('data.pkl', 'wb') as f:
    pickle.dump(data, f)

with open('data.pkl', 'rb') as f:
    data = pickle.load(f)
X_train = data['train']
y_train = data['target']