MongoDB 使用任意命名和编号的列进行数据透视/交叉表/转置

MongoDB Pivot / Crosstab / Transpose with arbitrarily named and numbered columns

我有一个 Mongo 数据库,其中包含导入的平面文件 CSV。在 SQL 中,这个文件无疑应该被规范化:文件包含每个句点一行,句点包含重复的信息。我创建了一个查询,该查询使用 'push' 运算符将(部分)重复信息聚合到行内的单个子对象中。这模仿规范化。我想做的是重组输出对象,以便子对象字典在顶层使用键和值。这在 SQL 中称为数据透视表查询或交叉表查询。在 Excel 中,它被称为转置。不管名称如何,我正在寻找的是获取键值对并将它们用作 Mongo.

中的 'columns' 的能力

由于 Mongo 和其他 NoSQL 数据库旨在非规范化实现,我很惊讶这这么难。

我正在尝试将以下 JSON 对象放入 Mongo:

[{ "_id": {"Date": "1/1/2018", "Type": "Green", "client_id": 1},
    "Sub_data": [{"sub_id" : 1}, {"sub_value": 2}]  },
 { "_id": {"Date": "1/1/2018", "Type": "Green", "client_id": 1},
    "Sub_data": [{"sub_id" : 2}, {"sub_value": 5}]  },
 { "_id": {"Date": "1/2/2018", "Type": "Green", "client_id": 1},
    "Sub_data": [{"sub_id" : 2}, {"sub_value": 4}]  },
 { "_id": {"Date": "1/1/2018", "Type": "Orange", "client_id": 1},
    "Sub_data": [{"sub_id" : 6}, {"sub_value": 7}]  }]

并得到以下结果:

[{ "_id": {"Date": "1/1/2018", "Type": "Green", "client_id": 1},
    "1" : 2, "2":5},
 { "_id": {"Date": "1/2/2018", "Type": "Green", "client_id": 1},
    "2" : 4},
 { "_id": {"Date": "1/2/2018", "Type": "Orange", "client_id": 1},
    "6" : 7}]

请注意,我希望此结果有任意数量的列。我已经查看了一些 SEEM 解决问题的解决方案(Array to object, AddFields, , Something like a pivot using static columns) and I've read multiple versions of this 'do it afterwards' code. post-processing 是唯一的方法吗?

注意:这是试图模仿 SQL 服务器(和 Excel 等)描述的功能 in this Stack Overflow question and this TechNet article

汇总起来,我使用第一个答案的第二个选项的整个管道如下所示:

db.rate_cards.aggregate(
        {
            "$group": {
                "_id": {
                    "date": "$date",
                    "start_date": "$start_date",
                    "end_date": "$end_date"

                },
                "code_data": {
                    "$push": {
                        "code_str": {"$substr" : ["$code",0,-1]},
                        "cpm": "$cpm"
                    }
                }
            }
        },
        {
            "$group":{
                "_id":"$_id",
                "data":{
                    "$mergeObjects":{
                        "$arrayToObject":[[
                                {
                                    "k":{"$let":{"vars":{"sub_id_elem":{"$arrayElemAt":["$code_data",0]}},"in":"$$sub_id_elem.code_str"}},
                                    "v":{"$let":{"vars":{"sub_value_elem":{"$arrayElemAt":["$code_data",1]}},"in":"$$sub_value_elem.cpm"}}
                                }
                            ]]
                        }
                }
            }
        },
        {"$replaceRoot":{"newRoot":{"$mergeObjects":["$_id",{"$arrayToObject":"$data"}]}}}

 )

请注意,这比我希望的要复杂一些,而且性能要求更高。它似乎声明了一个局部变量,使用了一个 in-clause,等等。在尝试 运行 两个答案的(有效)实施时,NoSQL 助推器扼流圈试图扩展第 600 行。

下面是原始数据集的略微编辑版本。请注意,原始查询中未使用的一些额外字段已被省略:

{
    "_id" : ObjectId("5a578d5c57d33b197004beed"),
    "date" : ISODate("2017-09-25T03:00:00.000+03:00"),
    "start_date" : ISODate("2017-09-25T03:00:00.000+03:00"),
    "end_date" : ISODate("2017-10-01T03:00:00.000+03:00"),
    "dp" : "M-Su 12m-6a",
    "dsc" : "Daypart",
    "net" : "val1",
    "place" : "loc1",
    "code" : 12,
    "cost" : 16.8
},
{
    "_id" : ObjectId("5a578d5c57d33b197004beee"),
    "date" : ISODate("2017-09-25T03:00:00.000+03:00"),
    "start_date" : ISODate("2017-09-25T03:00:00.000+03:00"),
    "end_date" : ISODate("2017-10-01T03:00:00.000+03:00"),
    "dp" : "M-Su 12m-6a",
    "dsc" : "Daypart",
    "net" : "val1",
    "place" : "loc3",
    "code" : 24,
    "cost" : 55.6
},
{
    "_id" : ObjectId("5a578d5c57d33b197004beef"),
    "date" : ISODate("2017-09-25T03:00:00.000+03:00"),
    "start_date" : ISODate("2017-09-25T03:00:00.000+03:00"),
    "end_date" : ISODate("2017-10-01T03:00:00.000+03:00"),
    "dp" : "M-Su 12n-6p",
    "dsc" : "Daypart",
    "net" : "val2",
    "place" : "loc2",
    "code" : 23,
    "cost" : 65.5
},
{
    "_id" : ObjectId("5a578d5c57d33b197004bef0"),
    "date" : ISODate("2017-09-25T03:00:00.000+03:00"),
    "start_date" : ISODate("2017-09-25T03:00:00.000+03:00"),
    "end_date" : ISODate("2017-10-01T03:00:00.000+03:00"),
    "dp" : "M-Su 6p-12m",
    "dsc" : "Daypart",
    "net" : "val2",
    "place" : "loc2",
    "code" : 23,
    "cost" : 101
}

好的,根据 post 中提供的信息和评论,我创建了以下数据集。

注意:我做了一些改动。也都在评论中注明了。

将 _id 更改为在数据库中读取 my_id 因为 _id 字段名称是保留的并且是唯一索引的。

更改"sub_id" 以将值存储为字符串类型。

db.test.insert(
[
 { "my_id": {"Date": "1/1/2018", "Type": "Green", "client_id": 1},
    "Sub_data": [{"sub_id" : "1"}, {"sub_value": 2}]  },
 { "my_id": {"Date": "1/1/2018", "Type": "Green", "client_id": 1},
    "Sub_data": [{"sub_id" : "2"}, {"sub_value": 5}]  },
 { "my_id": {"Date": "1/2/2018", "Type": "Green", "client_id": 1},
    "Sub_data": [{"sub_id" : "2"}, {"sub_value": 4}]  },
 { "my_id": {"Date": "1/1/2018", "Type": "Orange", "client_id": 1},
    "Sub_data": [{"sub_id" : "6"}, {"sub_value": 7}]  }
])

您需要使用 $group$arrayToObject 来输出预期的格式。

$group$push 推送子数据中的所有值,并将第一个元素映射到键,将第二个元素映射到值,然后 $arrayToObject 格式化为指定的键值.

$mergeObjects 将 _id 与其余值合并。 $replaceRoot 将合并的文档提升到顶级。

db.test.aggregate([
  {"$group":{
    "_id":"$my_id",
    "data":{
      "$push":{
        "k":{"$let":{"vars":{"sub_id_elem":{"$arrayElemAt":["$Sub_data",0]}},"in":"$$sub_id_elem.sub_id"}},
        "v":{"$let":{"vars":{"sub_value_elem":{"$arrayElemAt":["$Sub_data",1]}},"in":"$$sub_value_elem.sub_value"}}
      }
    }
  }},
  {"$replaceRoot":{"newRoot":{"$mergeObjects":["$_id",{"$arrayToObject":"$data"}]}}}
])

输出:

{Date:"1/2/2018", "Type":"Orange", "client_id": 1", "6":7}
{Date:"1/1/2018", "Type":"Green", "client_id": 1", "2":4}
{Date:"1/2/2018", "Type":"Green", "client_id": 1", "1":2, "2":5}

或者,您可以使用 $mergeObjects 作为累加器在分组时合并对象。

db.test.aggregate([
  {"$group":{
    "_id":"$my_id","data":{
      "$mergeObjects":{
        "$arrayToObject":[[
          {
            "k":{"$let":{"vars":{"sub_id_elem":{"$arrayElemAt":["$Sub_data",0]}},"in":"$$sub_id_elem.sub_id"}},
            "v":{"$let":{"vars":{"sub_value_elem":{"$arrayElemAt":["$Sub_data",1]}},"in":"$$sub_value_elem.sub_value"}}
          }
        ]]
      }
    }
  }},
  {"$replaceRoot":{"newRoot":{"$mergeObjects":["$_id","$data"]}}}
])