如何从填充有 datetime.time 值的系列中提取小时、分钟和秒
How to extract hour, minute and second from Series filled with datetime.time values
数据:
0 09:30:38
1 13:40:27
2 18:05:24
3 04:58:08
4 09:00:09
基本上我想做的是将其分成三列[小时、分钟、秒]
我尝试了以下代码,但 none 似乎有效:
train_sample.time.hour
AttributeError: 'Series' object has no attribute 'hour'
train_sample.time.dt.hour
AttributeError: Can only use .dt accessor with datetimelike values
pd.DatetimeIndex(train_sample.time).hour
TypeError: <class 'datetime.time'> is not convertible to datetime
这看起来很简单,但我想不通。任何帮助将非常感激。
对 time
s:
的提取属性使用列表理解
import datetime as datetime
df = pd.DataFrame({'time': [datetime.time(9, 30, 38),
datetime.time(13, 40, 27),
datetime.time(18, 5, 24),
datetime.time(4, 58, 8),
datetime.time(9, 0, 9)]})
print (df)
time
0 09:30:38
1 13:40:27
2 18:05:24
3 04:58:08
4 09:00:09
df[['h','m','s']] = pd.DataFrame([(x.hour, x.minute, x.second) for x in df['time']])
或转换为string
s,拆分并转换为int
:
df[['h','m','s']] = df['time'].astype(str).str.split(':', expand=True).astype(int)
print (df)
time h m s
0 09:30:38 9 30 38
1 13:40:27 13 40 27
2 18:05:24 18 5 24
3 04:58:08 4 58 8
4 09:00:09 9 0 9
一种方法是转换为 timedelta
并通过 pd.Series.dt.components
:
提取
df[['hour','minute','second']] = pd.to_timedelta(df['time']).dt.components.iloc[:, 1:4]
结果
time hour minute second
0 09:30:38 9 30 38
1 13:40:27 13 40 27
2 18:05:24 18 5 24
3 04:58:08 4 58 8
4 09:00:09 9 0 9
使用 :
拆分并创建数据框,每个拆分作为单独的列值。
import pandas as pd
d = {0: '09:30:38',
1: '13:40:27',
2: '18:05:24',
3: '04:58:08',
4: '09:00:09'}
df = pd.DataFrame([v.split(':') for v in d.values()], columns=['hour', 'minute', 'second'])
print(df)
结果:
hour minute second
0 09 30 38
1 13 40 27
2 18 05 24
3 04 58 08
4 09 00 09
看起来你的问题真的只是缺少 datetime accessor 在系列的末尾使用 dt
然后你可以使用 .hour 方法提取
train_sample['hour'] = train_sample.dt.hour
train_sample['minute'] = train_sample.dt.minute
train_sample['second'] = train_sample.dt.second
数据:
0 09:30:38
1 13:40:27
2 18:05:24
3 04:58:08
4 09:00:09
基本上我想做的是将其分成三列[小时、分钟、秒]
我尝试了以下代码,但 none 似乎有效:
train_sample.time.hour
AttributeError: 'Series' object has no attribute 'hour'
train_sample.time.dt.hour
AttributeError: Can only use .dt accessor with datetimelike values
pd.DatetimeIndex(train_sample.time).hour
TypeError: <class 'datetime.time'> is not convertible to datetime
这看起来很简单,但我想不通。任何帮助将非常感激。
对 time
s:
import datetime as datetime
df = pd.DataFrame({'time': [datetime.time(9, 30, 38),
datetime.time(13, 40, 27),
datetime.time(18, 5, 24),
datetime.time(4, 58, 8),
datetime.time(9, 0, 9)]})
print (df)
time
0 09:30:38
1 13:40:27
2 18:05:24
3 04:58:08
4 09:00:09
df[['h','m','s']] = pd.DataFrame([(x.hour, x.minute, x.second) for x in df['time']])
或转换为string
s,拆分并转换为int
:
df[['h','m','s']] = df['time'].astype(str).str.split(':', expand=True).astype(int)
print (df)
time h m s
0 09:30:38 9 30 38
1 13:40:27 13 40 27
2 18:05:24 18 5 24
3 04:58:08 4 58 8
4 09:00:09 9 0 9
一种方法是转换为 timedelta
并通过 pd.Series.dt.components
:
df[['hour','minute','second']] = pd.to_timedelta(df['time']).dt.components.iloc[:, 1:4]
结果
time hour minute second
0 09:30:38 9 30 38
1 13:40:27 13 40 27
2 18:05:24 18 5 24
3 04:58:08 4 58 8
4 09:00:09 9 0 9
使用 :
拆分并创建数据框,每个拆分作为单独的列值。
import pandas as pd
d = {0: '09:30:38',
1: '13:40:27',
2: '18:05:24',
3: '04:58:08',
4: '09:00:09'}
df = pd.DataFrame([v.split(':') for v in d.values()], columns=['hour', 'minute', 'second'])
print(df)
结果:
hour minute second
0 09 30 38
1 13 40 27
2 18 05 24
3 04 58 08
4 09 00 09
看起来你的问题真的只是缺少 datetime accessor 在系列的末尾使用 dt
然后你可以使用 .hour 方法提取
train_sample['hour'] = train_sample.dt.hour
train_sample['minute'] = train_sample.dt.minute
train_sample['second'] = train_sample.dt.second