R:转换为水平顺序与 case_when 相同的因子
R: convert to factor with order of levels same with case_when
在做数据分析的时候,我有时需要将值重新编码为因子,以便进行分组分析。我想保持因子的顺序与 case_when
中指定的转换顺序相同。在这种情况下,顺序应该是 "Excellent" "Good" "Fail"
。我怎样才能做到这一点而不像 levels=c('Excellent', 'Good', 'Fail')
?
非常感谢。
library(dplyr, warn.conflicts = FALSE)
set.seed(1234)
score <- runif(100, min = 0, max = 100)
Performance <- function(x) {
case_when(
is.na(x) ~ NA_character_,
x > 80 ~ 'Excellent',
x > 50 ~ 'Good',
TRUE ~ 'Fail'
) %>% factor(levels=c('Excellent', 'Good', 'Fail'))
}
performance <- Performance(score)
levels(performance)
#> [1] "Excellent" "Good" "Fail"
table(performance)
#> performance
#> Excellent Good Fail
#> 15 30 55
虽然我的解决方案用一个混乱的中间变量替换了你的管道,但这是有效的:
library(dplyr, warn.conflicts = FALSE)
set.seed(1234)
score <- runif(100, min = 0, max = 100)
Performance <- function(x) {
t <- case_when(
is.na(x) ~ NA_character_,
x > 80 ~ 'Excellent',
x > 50 ~ 'Good',
TRUE ~ 'Fail'
)
to <- subset(t, !duplicated(t))
factor(t, levels=(to[order(subset(x, !duplicated(t)), decreasing=T)] ))
}
performance <- Performance(score)
levels(performance)
已编辑修复!
级别默认按字典顺序设置。如果你不想指定它们,你可以设置它们使字典顺序正确(Performance1
),或者创建一个levels
向量一次,并在生成因子和设置时使用它级别 (Performance2
)。我不知道这其中的任何一个能为您节省多少努力或乏味,但它们就在这里。看看我的第三条建议,我认为这是最不乏味的方式。
Performance1 <- function(x) {
case_when(
is.na(x) ~ NA_character_,
x > 80 ~ 'Excellent',
x <= 50 ~ 'Fail',
TRUE ~ 'Good',
) %>% factor()
}
Performance2 <- function(x, levels = c("Excellent", "Good", "Fail")){
case_when(
is.na(x) ~ NA_character_,
x > 80 ~ levels[1],
x > 50 ~ levels[2],
TRUE ~ levels[3]
) %>% factor(levels)
}
performance1 <- Performance1(score)
levels(performance1)
# [1] "Excellent" "Fail" "Good"
table(performance1)
# performance1
# Excellent Fail Good
# 15 55 30
performance2 <- Performance2(score)
levels(performance2)
# [1] "Excellent" "Good" "Fail"
table(performance2)
# performance2
# Excellent Good Fail
# 15 30 55
如果我能提出一个更简单的方法:
performance <- cut(score, breaks = c(0, 50, 80, 100),
labels = c("Fail", "Good", "Excellent"))
levels(performance)
# [1] "Fail" "Good" "Excellent"
table(performance)
# performance
# Fail Good Excellent
# 55 30 15
这是我一直在使用的一个实现:
library(dplyr)
library(purrr)
library(rlang)
library(forcats)
factored_case_when <- function(...) {
args <- list2(...)
rhs <- map(args, f_rhs)
cases <- case_when(
!!!args
)
exec(fct_relevel, cases, !!!rhs)
}
numbers <- c(2, 7, 4, 3, 8, 9, 3, 5, 2, 7, 5, 4, 1, 9, 8)
factored_case_when(
numbers <= 2 ~ "Very small",
numbers <= 3 ~ "Small",
numbers <= 6 ~ "Medium",
numbers <= 8 ~ "Large",
TRUE ~ "Huge!"
)
#> [1] Very small Large Medium Small Large Huge!
#> [7] Small Medium Very small Large Medium Medium
#> [13] Very small Huge! Large
#> Levels: Very small Small Medium Large Huge!
这样做的好处是不必手动指定因子水平。
我还向 dplyr 提交了此功能的功能请求:https://github.com/tidyverse/dplyr/issues/6029
我的解决方案
最后,我想出了一个解决办法。对于那些有兴趣的人,这是我的解决方案。我写了一个函数fct_case_when
(假装是forcats
中的一个函数)。它只是 case_when
的包装器,带有因子输出。级别的顺序与参数顺序相同。
fct_case_when <- function(...) {
args <- as.list(match.call())
levels <- sapply(args[-1], function(f) f[[3]]) # extract RHS of formula
levels <- levels[!is.na(levels)]
factor(dplyr::case_when(...), levels=levels)
}
现在,我可以使用 fct_case_when
代替 case_when
,结果将与以前的实现相同(但不那么乏味)。
Performance <- function(x) {
fct_case_when(
is.na(x) ~ NA_character_,
x > 80 ~ 'Excellent',
x > 50 ~ 'Good',
TRUE ~ 'Fail'
)
}
performance <- Performance(score)
levels(performance)
#> [1] "Excellent" "Good" "Fail"
table(performance)
#> performance
#> Excellent Good Fail
#> 15 30 55
在做数据分析的时候,我有时需要将值重新编码为因子,以便进行分组分析。我想保持因子的顺序与 case_when
中指定的转换顺序相同。在这种情况下,顺序应该是 "Excellent" "Good" "Fail"
。我怎样才能做到这一点而不像 levels=c('Excellent', 'Good', 'Fail')
?
非常感谢。
library(dplyr, warn.conflicts = FALSE)
set.seed(1234)
score <- runif(100, min = 0, max = 100)
Performance <- function(x) {
case_when(
is.na(x) ~ NA_character_,
x > 80 ~ 'Excellent',
x > 50 ~ 'Good',
TRUE ~ 'Fail'
) %>% factor(levels=c('Excellent', 'Good', 'Fail'))
}
performance <- Performance(score)
levels(performance)
#> [1] "Excellent" "Good" "Fail"
table(performance)
#> performance
#> Excellent Good Fail
#> 15 30 55
虽然我的解决方案用一个混乱的中间变量替换了你的管道,但这是有效的:
library(dplyr, warn.conflicts = FALSE)
set.seed(1234)
score <- runif(100, min = 0, max = 100)
Performance <- function(x) {
t <- case_when(
is.na(x) ~ NA_character_,
x > 80 ~ 'Excellent',
x > 50 ~ 'Good',
TRUE ~ 'Fail'
)
to <- subset(t, !duplicated(t))
factor(t, levels=(to[order(subset(x, !duplicated(t)), decreasing=T)] ))
}
performance <- Performance(score)
levels(performance)
已编辑修复!
级别默认按字典顺序设置。如果你不想指定它们,你可以设置它们使字典顺序正确(Performance1
),或者创建一个levels
向量一次,并在生成因子和设置时使用它级别 (Performance2
)。我不知道这其中的任何一个能为您节省多少努力或乏味,但它们就在这里。看看我的第三条建议,我认为这是最不乏味的方式。
Performance1 <- function(x) {
case_when(
is.na(x) ~ NA_character_,
x > 80 ~ 'Excellent',
x <= 50 ~ 'Fail',
TRUE ~ 'Good',
) %>% factor()
}
Performance2 <- function(x, levels = c("Excellent", "Good", "Fail")){
case_when(
is.na(x) ~ NA_character_,
x > 80 ~ levels[1],
x > 50 ~ levels[2],
TRUE ~ levels[3]
) %>% factor(levels)
}
performance1 <- Performance1(score)
levels(performance1)
# [1] "Excellent" "Fail" "Good"
table(performance1)
# performance1
# Excellent Fail Good
# 15 55 30
performance2 <- Performance2(score)
levels(performance2)
# [1] "Excellent" "Good" "Fail"
table(performance2)
# performance2
# Excellent Good Fail
# 15 30 55
如果我能提出一个更简单的方法:
performance <- cut(score, breaks = c(0, 50, 80, 100),
labels = c("Fail", "Good", "Excellent"))
levels(performance)
# [1] "Fail" "Good" "Excellent"
table(performance)
# performance
# Fail Good Excellent
# 55 30 15
这是我一直在使用的一个实现:
library(dplyr)
library(purrr)
library(rlang)
library(forcats)
factored_case_when <- function(...) {
args <- list2(...)
rhs <- map(args, f_rhs)
cases <- case_when(
!!!args
)
exec(fct_relevel, cases, !!!rhs)
}
numbers <- c(2, 7, 4, 3, 8, 9, 3, 5, 2, 7, 5, 4, 1, 9, 8)
factored_case_when(
numbers <= 2 ~ "Very small",
numbers <= 3 ~ "Small",
numbers <= 6 ~ "Medium",
numbers <= 8 ~ "Large",
TRUE ~ "Huge!"
)
#> [1] Very small Large Medium Small Large Huge!
#> [7] Small Medium Very small Large Medium Medium
#> [13] Very small Huge! Large
#> Levels: Very small Small Medium Large Huge!
这样做的好处是不必手动指定因子水平。
我还向 dplyr 提交了此功能的功能请求:https://github.com/tidyverse/dplyr/issues/6029
我的解决方案
最后,我想出了一个解决办法。对于那些有兴趣的人,这是我的解决方案。我写了一个函数fct_case_when
(假装是forcats
中的一个函数)。它只是 case_when
的包装器,带有因子输出。级别的顺序与参数顺序相同。
fct_case_when <- function(...) {
args <- as.list(match.call())
levels <- sapply(args[-1], function(f) f[[3]]) # extract RHS of formula
levels <- levels[!is.na(levels)]
factor(dplyr::case_when(...), levels=levels)
}
现在,我可以使用 fct_case_when
代替 case_when
,结果将与以前的实现相同(但不那么乏味)。
Performance <- function(x) {
fct_case_when(
is.na(x) ~ NA_character_,
x > 80 ~ 'Excellent',
x > 50 ~ 'Good',
TRUE ~ 'Fail'
)
}
performance <- Performance(score)
levels(performance)
#> [1] "Excellent" "Good" "Fail"
table(performance)
#> performance
#> Excellent Good Fail
#> 15 30 55