根据周围的非缺失值有条件地替换缺失值

Conditionally replace missing values depending on surrounding non-missing values

我正在尝试替换向量中的缺失值 (NA)。 NA 两个相等的数字被那个数字代替。 NA 在两个不同的值之间,应该保持 NA。例如,给定向量 "a",我希望它是 "b".

a = c(1, NA, NA, NA, 1, NA, NA, NA, 2, NA, NA, 2, 3, NA, NA, 3)
b = c(1, 1, 1, 1, 1, NA, NA, NA, 2, 2, 2, 2, 3, 3, 3, 3)

如您所见,NA 的第二个 运行,介于值 12 之间,未被替换。

有没有向量化计算的方法?

你可以创建这样的函数:

fill_data <- function(vec) {

  for(l in unique(vec[!is.na(vec)])) {

    g <- which(vec %in% l)

    indexes <- list()

    for(i in 1:(length(g) - 1)) {
      indexes[[i]] <- (g[i]+1):(g[i+1]-1)
    }

    for(i in 1:(length(g) - 1)) { 
      if(all(is.na(vec[indexes[[i]]]))) {
        vec[indexes[[i]]] <- l
      }
    }
  }

  return(vec)
}

运行 函数:

a = c(1, NA, NA, NA, 1, NA, NA, NA, 2, NA, NA, 2, 3, NA, NA, 3)

fill_data(a)
[1]  1  1  1  1  1 NA NA NA  2  2  2  2  3  3  3  3

如果你有一个在不同地方有值的向量,它也可以工作:

ab = c(1, NA, NA, NA, 1, NA, NA, NA, 1, NA, 2, NA, NA, NA, 2, NA , 1, NA, 1, 3, NA, NA, 3)

fill_data(ab)
[1]  1  1  1  1  1  1  1  1  1 NA  2  2  2  2  2 NA  1  1  1  3  3  3  3

解释:

首先,您找到唯一的 non-NA 个值。

然后它获取每个唯一 non-NA 值的索引并获取它们之间的值;

然后它测试这些值是否都是 NA,如果是,则将它们替换为级别的值。

您可以使用 zoo 包中的便利函数。在这里,我们替换原始向量中的 NA,其中插值(由 na.approx 创建)等于 'last observations carried forward'(由 na.locf 创建):

library(zoo)
a_ap <- na.approx(a)
a_locf <- na.locf(a)
a[which(a_ap == a_locf)] <- a_ap[which(a_ap == a_locf)]
a
# [1]  1  1  1  1  1 NA NA NA  2  2  2  2  3  3  3  3

要考虑前导和尾随 NA,添加 na.rm = FALSE:

a <- c(NA, 1, NA, NA, NA, 1, NA, NA, NA, 2, NA, NA, 2, 3, NA, NA, 3, NA)

a_ap <- na.approx(a, na.rm = FALSE)
a_locf <- na.locf(a, na.rm = FALSE)
a[which(a_ap == a_locf)] <- a_ap[which(a_ap == a_locf)]
a
# [1] NA  1  1  1  1  1 NA NA NA  2  2  2  2  3  3  3  3 NA

OP 要求 vecgorized 解决方案,所以这里有一个可能的向量化基础 R 解决方案(没有 for 循环),它也可以处理 leading/lagging NAs

# Define a vector with Leading/Lagging NAs
a <- c(NA, NA, 1, NA, NA, NA, 1, NA, NA, NA, 2, NA, NA, 2, 3, NA, NA, 3, NA, NA)

# Save the boolean vector as we are going to reuse it a lot
na_vals <- is.na(a)

# Find the NAs location compared to the non-NAs
ind <- findInterval(which(na_vals), which(!na_vals))

# Find the consecutive values that equal
ind2 <- which(!diff(a[!na_vals]))

# Fill only NAs between equal consequtive files
a[na_vals] <- a[!na_vals][ind2[match(ind, ind2)]]
a
# [1] NA NA  1  1  1  1  1 NA NA NA  2  2  2  2  3  3  3  3 NA NA

大向量的一些时间比较

# Create a big vector
set.seed(123)
a <- sample(c(NA, 1:5), 5e7, replace = TRUE)

############################################
##### Cainã Max Couto-Silva

fill_data <- function(vec) {

  for(l in unique(vec[!is.na(vec)])) {

    g <- which(vec %in% l)

    indexes <- list()

    for(i in 1:(length(g) - 1)) {
      indexes[[i]] <- (g[i]+1):(g[i+1]-1)
    }

    for(i in 1:(length(g) - 1)) { 
      if(all(is.na(vec[indexes[[i]]]))) {
        vec[indexes[[i]]] <- l
      }
    }
  }

  return(vec)
}

system.time(res <- fill_data(a))
#   user  system elapsed 
#  81.73    4.41   86.48 

############################################
##### Henrik

system.time({
  a_ap <- na.approx(a, na.rm = FALSE)
  a_locf <- na.locf(a, na.rm = FALSE)
  a[which(a_ap == a_locf)] <- a_ap[which(a_ap == a_locf)]
})
#  user  system elapsed 
# 12.55    3.39   15.98 

# Validate
identical(res, as.integer(a))
# [1] TRUE

############################################
##### David

## Recreate a as it been overridden
set.seed(123)
a <- sample(c(NA, 1:5), 5e7, replace = TRUE)

system.time({
  # Save the boolean vector as we are going to reuse it a lot
  na_vals <- is.na(a)

  # Find the NAs location compaed to the non-NAs
  ind <- findInterval(which(na_vals), which(!na_vals))

  # Find the consecutive values that equl
  ind2 <- which(!diff(a[!na_vals]))

  # Fill only NAs between equal consequtive files
  a[na_vals] <- a[!na_vals][ind2[match(ind, ind2)]]
})
# user  system elapsed 
# 3.39    0.71    4.13 

# Validate
identical(res, a)
# [1] TRUE