来自 CSV 的 Avro Python - avro.io.AvroTypeException:数据不是架构的示例

Avro Python from CSV - avro.io.AvroTypeException: The datum is not an example of the schema

我是 Avro 的新手。我正在尝试解析一个包含一个字符串值和一个 int 值的简单 CSV 文件,但出现错误:avro.io.AvroTypeException: The datum is not an example of the schema[=26] =]

我使用的架构是:

{"namespace": "paymenttransaction",
 "type": "record",
 "name": "Payment",
 "fields": [
     {"name": "TransactionId", "type": "string"},
     {"name": "Id",  "type": "int"}
 ]
}

CSV 文件包含以下内容:

TransactionId,Id
2018040101000222749,1

而我运行制作人的Python代码是:

from confluent_kafka import avro
from confluent_kafka.avro import AvroProducer
import csv

value_schema = avro.load('/home/daniela/avro/example.avsc')

AvroProducerConf = {'bootstrap.servers': 'localhost:9092',
                    'schema.registry.url': 'http://localhost:8081',
                    }

avroProducer = AvroProducer(AvroProducerConf, default_value_schema=value_schema)

with open('/home/usertest/avro/data/paymenttransactions.csv') as file:
    reader = csv.DictReader(file, delimiter=",")
    for row in reader:

        avroProducer.produce(topic='test', value=row)
        print(row)
        avroProducer.flush()

我做错了什么?

这是因为 Id 仍然是一个字符串,而 schema 需要一个 int。

试试 :

with open('/home/usertest/avro/data/paymenttransactions.csv') as file:
    reader = csv.DictReader(file, delimiter=",")
    for row in reader:
        data_set = {"TransactionId": row["TransactionId"], "Id": int(row["Id"])}
        avroProducer.produce(topic='test', value=data_set)
        print(row)
        avroProducer.flush()