根据 pandas df 中其他列中的值有条件地填充列

Conditionally fill column based off values in other columns in a pandas df

这个问题类似于一些关于有条件地填充列的问题,但我的 df 有点复杂。

我有一个 df 列,其中包含浮点数和字符串。我正在尝试根据字符串有条件地填充包含浮点数的列。

基于下面的df

如果 Code 中的值以 A 开头,我想保持原样。

如果值 CodeB 开头,我想保持相同的初始值和 return nan's 到以下行,直到 [=中的下一个值=18=].

如果Code中的值以C开头,我想保持相同的第一个值,直到下一个值在['Numx','Numy]中浮动

import pandas as pd
import numpy as np


d = ({                          
      'Code' :['A1','A1','','B1','B1','A2','A2','','B2','B2','','A3','A3','A3','','B1','','B4','B4','A2','A2','A1','A1','','B4','B4','C1','C1','','','D1','','B2'],
      'Numx' : [30.2,30.5,30.6,35.6,40.2,45.5,46.1,48.1,48.5,42.2,'',30.5,30.6,35.6,40.2,45.5,'',48.1,48.5,42.2, 40.1,48.5,42.2,'',48.5,42.2,43.1,44.1,'','','','',45.1],
      'Numy' : [1.9,2.3,2.5,2.2,2.5,3.1,3.4,3.6,3.7,5.4,'',2.3,2.5,2.2,2.5,3.1,'',3.6,3.7,5.4,6.5,8.5,2.2,'',8.5,2.2,2.3,2.5,'','','','',3.2]
      })

df = pd.DataFrame(数据=d)

输出:

   Code  Numx Numy
0    A1  30.2  1.9
1    A1  30.5  2.3
2        30.6  2.5
3    B1  35.6  2.2
4    B1  40.2  2.5
5    A2  45.5  3.1
6    A2  46.1  3.4
7        48.1  3.6
8    B2  48.5  3.7
9    B2  42.2  5.4
10        nan  nan       
11   A3  30.5  2.3
12   A3  30.6  2.5
13   A3  35.6  2.2
14       40.2  2.5
15   B1  45.5  3.1
16        nan  nan     
17   B4  48.1  3.6
18   B4  48.5  3.7
19   A2  42.2  5.4
20   A2  40.1  6.5
21   A1  48.5  8.5
22   A1  42.2  2.2
23        nan  nan      
24   B4  48.5  8.5
25   B4  42.2  2.2
26   C1  43.1  2.3
27   C1  44.1  2.5
28        nan  nan      
29        nan  nan   
30   D1   nan  nan      
31        nan  nan        
32   B2  45.1  3.2

Code 中的值为 B:

时,我在想这样的事情
df['Numx'] = np.where(df['Code'] == 'B-'.ffill()) 
df['Numy'] = np.where(df['Code'] == 'B-'.ffill())

所以我想要的输出是:

   Code  Numx Numy
0    A1  30.2  1.9
1    A1  30.5  2.3
2        30.6  2.5
3    B1  35.6  2.2
4    B1   nan  nan
5    A2  45.5  3.1
6    A2  46.1  3.4
7        48.1  3.6
8    B2  48.5  3.7
9    B2   nan  nan
10        nan  nan        
11   A3  30.5  2.3
12   A3  30.6  2.5
13   A3  35.6  2.2
14       40.2  2.5
15   B1  45.5  3.1
16        nan  nan         
17   B4  48.1  3.6
18   B4   nan  nan
19   A2  42.2  5.4
20   A2  40.1  6.5
21   A1  48.5  8.5
22   A1  42.2  2.2
23        nan  nan      
24   B4  48.5  8.5
25   B4   nan  nan
26   C1  43.1  2.3
27   C1  43.1  2.3
28       43.1  2.3   
29       43.1  2.3   
30   D1  43.1  2.3   
31       43.1  2.3         
32   B2  45.1  3.2

我认为需要:

df['Code_new'] = df['Code'].where(df['Code'].isin(['AA','BB'])).ffill()

df[['Numx','Numy']] = df[['Numx','Numy']].mask(df['Code_new'].duplicated())
mask = df['Code_new'] == 'BB'
df.loc[mask, ['Numx','Numy']] = df.loc[mask, ['Numx','Numy']].ffill()
print (df)
  Code  Numx Numy Code_new
0   AA  30.2  1.9       AA
1        NaN  NaN       AA
2        NaN  NaN       AA
3   BB  35.6  2.2       BB
4       35.6  2.2       BB
5       35.6  2.2       BB
6       35.6  2.2       BB
7   CC  35.6  2.2       BB
8       35.6  2.2       BB
9   DD  35.6  2.2       BB

或者:

df = df.replace('nan', np.nan)

df['Code_new'] = df['Code'].where(df['Code'].isin(['AA','BB'])).ffill()

m1 = df['Code_new'].duplicated() & (df['Code_new'] == 'AA')
df[['Numx','Numy']] = df[['Numx','Numy']].mask(m1)
m2 = df['Code_new'] == 'BB'
df.loc[m2, ['Numx','Numy']] = df.loc[m2, ['Numx','Numy']].ffill()
print (df)
  Code  Numx  Numy Code_new
0   AA  30.2   1.9       AA
1        NaN   NaN       AA
2        NaN   NaN       AA
3   BB  35.6   2.2       BB
4       40.2   2.5       BB
5       45.5   3.1       BB
6       45.5   3.1       BB
7   CC  45.5   3.1       BB
8       45.5   3.1       BB
9   DD  42.2   5.4       BB