直方图中矩形的最大面积 - 为什么我们需要堆栈?
Maximum area of a rectangle in an histogram - Why do we need stack?
考虑以下 problem (and solution):
Given n non-negative integers representing the height of bars of width one of a histogram, find the maximum area rectangle of histogram i.e. the maximum area rectangle contained in the histogram.
核心思路是计算:
R[i] = Area of the largest rectangle with the bar at i is as the
smallest bar in the rectangle (i.e. width = H[i]) left[i] = the left
most boundary of R[i], which is the leftmost bar greater than H[i].
right[i] = the right most boundary of R[i], which is the rightmost bar
greater than H[i].
我知道需要一个堆栈来计算 right
和 left
但 我认为 我能够提供类似的解决方案而不使用堆栈:
def max_area_rect(lst):
n = len(lst)
right = [-1] * n
left = [-1] * n
right[n - 1] = n
for i in range(n - 2, -1, -1):
right[i] = i + 1 if lst[i] > lst[i + 1] else right[i + 1]
left[0] = -1
for i in range(1, n):
left[i] = i - 1 if lst[i - 1] < lst[i] else left[i - 1]
max_res = -1
for i in range(n):
right_len = right[i] - i -1
left_len = i - left[i] + 1
h = min(lst[right_len - 1], lst[left_len + 1])
res = (right_len + left_len) * h
if res > max_res:
max_res = res
return max_res
# test
print(max_area_rect([4, 2, 1, 8, 6, 8, 5, 2])) # expected result: 20
所以我的问题是:为什么我们需要堆栈?我的方法有效吗?
你提到的 left[i]
的定义
left[i] = the left most boundary of R[i], which is the leftmost bar greater than H[i]
您在代码中定义的内容
left[i] = i - 1 if lst[i - 1] < lst[i] else left[i - 1]
即如果左侧的柱子更高,则您放置 left[i] = left[i-1]
。但是,这里的错误是 left[i-1]
存储了大于 lst[i-1]
而不是 lst[i]
.
的最左边的索引
例如在您提供的输入序列 6, 8, 5
中,left[i]
for 8 不应该包括 6
,所以 left[i]
应该是 i
但是left[i]
for 5 应该包括 6
和 8
,这就是您的代码忽略的内容。
考虑以下 problem (and solution):
Given n non-negative integers representing the height of bars of width one of a histogram, find the maximum area rectangle of histogram i.e. the maximum area rectangle contained in the histogram.
核心思路是计算:
R[i] = Area of the largest rectangle with the bar at i is as the smallest bar in the rectangle (i.e. width = H[i]) left[i] = the left most boundary of R[i], which is the leftmost bar greater than H[i]. right[i] = the right most boundary of R[i], which is the rightmost bar greater than H[i].
我知道需要一个堆栈来计算 right
和 left
但 我认为 我能够提供类似的解决方案而不使用堆栈:
def max_area_rect(lst):
n = len(lst)
right = [-1] * n
left = [-1] * n
right[n - 1] = n
for i in range(n - 2, -1, -1):
right[i] = i + 1 if lst[i] > lst[i + 1] else right[i + 1]
left[0] = -1
for i in range(1, n):
left[i] = i - 1 if lst[i - 1] < lst[i] else left[i - 1]
max_res = -1
for i in range(n):
right_len = right[i] - i -1
left_len = i - left[i] + 1
h = min(lst[right_len - 1], lst[left_len + 1])
res = (right_len + left_len) * h
if res > max_res:
max_res = res
return max_res
# test
print(max_area_rect([4, 2, 1, 8, 6, 8, 5, 2])) # expected result: 20
所以我的问题是:为什么我们需要堆栈?我的方法有效吗?
你提到的 left[i]
的定义
left[i] = the left most boundary of R[i], which is the leftmost bar greater than H[i]
您在代码中定义的内容
left[i] = i - 1 if lst[i - 1] < lst[i] else left[i - 1]
即如果左侧的柱子更高,则您放置 left[i] = left[i-1]
。但是,这里的错误是 left[i-1]
存储了大于 lst[i-1]
而不是 lst[i]
.
例如在您提供的输入序列 6, 8, 5
中,left[i]
for 8 不应该包括 6
,所以 left[i]
应该是 i
但是left[i]
for 5 应该包括 6
和 8
,这就是您的代码忽略的内容。