通过谐波数生成直方图

Generating a Histogram by Harmonic Number

我正在尝试在 GNU Octave 中创建一个程序来绘制一个直方图,显示修改后的正弦波的基波和谐波(SCR 调光器的输出,它由一个正弦波组成,该正弦波在部分通过波)。

我已经能够生成波形并执行 FFT 以获得一组频率与幅度点,但是我不确定如何将这些数据转换为适合生成直方图的 bin。

示例代码和下面我所追求的图像 - 感谢您的帮助!

clear();
vrms = 120;
freq = 60;
nCycles = 2;
level = 25;
vpeak = sqrt(2) * vrms;
sampleinterval = 0.00001;
num_harmonics = 10

disp("Start");

% Draw the waveform
x = 0 : sampleinterval : nCycles * 1 / freq; % time in sampleinterval increments
dimmed_wave = [];
undimmed_wave = [];
for i = 1 : columns(x)
  rad_value = x(i) * 2 * pi * freq;
  off_time =  mod(rad_value,  pi);
  on_time =  pi*(100-level)/100;
  if (off_time < on_time)
    dimmed_wave = [dimmed_wave, 0]; % in the dimmed period, value is zero
  else
    dimmed_wave = [dimmed_wave, sin(rad_value)]; % when not dimmed, value = sine
  endif
  undimmed_wave = [undimmed_wave, sin(rad_value)];
endfor

y = dimmed_wave * vpeak; % calculate instantaneous voltage
undimmed = undimmed_wave * vpeak;

subplot(2,1,1)
plot(x*1000, y, '-', x*1000, undimmed, '--');
xlabel ("Time (ms)");
ylabel ("Voltage");

% Fourier Transform to determine harmonics
subplot(2,1,2)

N = length(dimmed_wave);  % number of points
fft_vals = abs(fftshift(fft(dimmed_wave))); % perform fft
frequency = [ -(ceil((N-1)/2):-1:1) ,0 ,(1:floor((N-1)/2)) ] *  1 / (N *sampleinterval);
plot(frequency, fft_vals);
axis([0,400]);
xlabel ("Frequency");
ylabel ("Amplitude");

你知道你的基频(基音),我们称它为F2*F 是二次谐波,3*F 是三次谐波,等等。您想要在这些之间的中间设置直方图 bin 边缘:1.5*F2.5*F 等。

您的输入信号有两个周期,因此您的(整数)基频是 k=2([=17= 处的值,图中的第一个峰值)。二次谐波在 k=4,三次谐波在 k=6,等等

因此您可以将 bin 边缘设置为 k = 1:2:end

一般来说,这会是 k = nCycles/2:nCycles:end

您可以根据我们计算的 bin 边缘计算您的条形图,如下所示:

fft_vals = abs(fft(dimmed_wave));
nHarmonics = 9;
edges = nCycles/2 + (0:nHarmonics)*nCycles;
H = cumsum(fft_vals);
H = diff(H(edges));
bar(1:nHarmonics,H);