遍历图表中的所有可用路径

Traversing through all the available paths in a diagraph

有如下数字的图结构。

将此结构加载到 python 中的图形对象中。我把它做成一个多行字符串,如下所示。

myString='''1
2 3
4 5 6
7 8 9 10
11 12 13 14 15'''

将其表示为列表列表。

>>> listofLists=[ list(map(int,elements.split())) for elements in myString.strip().split("\n")]
>>> print(listofLists)
[[1], [2, 3], [4, 5, 6], [7, 8, 9, 10], [11, 12, 13, 14, 15]]

在 python

中使用以下节点和边 class 创建图形结构

节点Class,它需要位置作为元组和值 示例:元素及其位置,值

1 --- position (0,0) and value is 1
2 --- position (1,0) and value is 2
3 --- position (1,1) and value is 3

节点class

class node(object):
    def __init__(self,position,value):
        '''
        position : gives the position of the node wrt to the test string as a tuple
        value    : gives the value of the node
        '''
        self.value=value
        self.position=position

    def getPosition(self):
        return self.position

    def getvalue(self):
        return self.value

    def __str__(self):
        return 'P:'+str(self.position)+' V:'+str(self.value)

边 class 在两个节点之间创建一条边。

class edge(object):
    def __init__(self,src,dest):
        '''src and dest are nodes'''
        self.src = src
        self.dest = dest

    def getSource(self):
        return self.src

    def getDestination(self):
        return self.dest
    #return the destination nodes value as the weight
    def getWeight(self):
        return self.dest.getvalue()

    def __str__(self):
        return (self.src.getPosition(),)+'->'+(self.dest.getPosition(),)

有向图class如下。图结构构建为字典邻接列表。 {node1:[node2,node3],node2:[node3,node4]......}

class Diagraph(object):

    '''the edges is a dict mapping node to a list of its destination'''
    def __init__(self):
        self.edges = {}

    '''Adds the given node as a key to the dict named edges ''' 
    def addNode(self,node):
        if node in self.edges:
            raise ValueError('Duplicate node')
        else:
            self.edges[node]=[]

    '''addEdge accepts and edge class object checks if source and destination node are present in the graph '''     
    def addEdge(self,edge):
        src = edge.getSource()
        dest = edge.getDestination()
        if not (src in self.edges and dest in self.edges):
            raise ValueError('Node not in graph')
        self.edges[src].append(dest)

    '''getChildrenof returns  all the children of the node'''   
    def getChildrenof(self,node):
        return self.edges[node]

    '''to check whether a node is present in the graph or not'''    
    def hasNode(self,node):
        return node in self.edges

    '''rootNode returns the root node i.e node at position (0,0)''' 
    def rootNode(self):
        for  keys in self.edges:
            return keys if keys.getPosition()==(0,0) else 'No Root node for this graph'

用于创建和return要处理的图形对象的函数。

def createmygraph(testString):
    '''input is a multi-line string'''

    #create a list of lists from the string
    listofLists=[ list(map(int,elements.split())) for elements in testString.strip().split("\n")]
    y = Diagraph()
    nodeList = []

    # create all the nodes and store it in a list nodeList
    for i in range(len(listofLists)):
        for j in range(len(listofLists)):
            if i<=j:
                mynode=node((j,i),listofLists[j][i])
                nodeList.append(mynode)
                y.addNode(mynode)

    # create all the edges
    for srcNode in nodeList:
    # iterate through all the nodes again and form a logic add the edges
        for destNode in nodeList:
            #to add the immediate down node eg : add 7 (1,0) to 3 (0,0) , add 2 (2,0) to 7 (1,0)
            if srcNode.getPosition()[0]==destNode.getPosition()[0]-1 and srcNode.getPosition()[1]==destNode.getPosition()[1]-1:
                y.addEdge(edge(srcNode,destNode))
            #to add the bottom right node eg :add 4 (1,1) to 3 (0,0) 
            if srcNode.getPosition()[0]==destNode.getPosition()[0]-1 and srcNode.getPosition()[1]==destNode.getPosition()[1]:
                y.addEdge(edge(srcNode,destNode))

    return y

如何列出两个 nodes.Specifically 之间的所有可用路径 1---->11 , 1---->12 , 1---->13 , 1---->14 , 1---->15 对于这种情况,我尝试了左手优先深度优先的方法。但是它无法获取路径。

def leftFirstDepthFirst(graph,start,end,path,valueSum):
    #add input start node to the path
    path=path+[start]
    #add the value to the valueSum variable
    valueSum+=start.getvalue()
    print('Current Path ',printPath(path))
    print('The sum is ',valueSum)
    # return if start and end node matches.
    if start==end:
        print('returning as start and end have matched')
        return path

    #if there are no further destination nodes, move up a node in the path and remove the current element from the path list.
    if not graph.getChildrenof(start):
        path.pop()
        valueSum=valueSum-start.getvalue()
        return leftFirstDepthFirst(graph,graph.getChildrenof(path[-1])[1],end,path,valueSum)
    else:
        for aNode in graph.getChildrenof(start):
            return leftFirstDepthFirst(graph,aNode,end,path,valueSum)
    print('no further path to explore')

正在测试代码。

#creating a graph object with given string
y=createmygraph(myString)

作用于return终端节点,如11、12、13、14、15。

def fetchTerminalNode(graph,position):
    terminalNode=[]
    for keys in graph.edges:
        if not graph.edges[keys]:
            terminalNode.append(keys)
    return terminalNode[position]

运行深度先左先函数

source=y.rootNode() # element at position (0,0)
destination=fetchTerminalNode(y,1) #ie. number 12
print('Path from ',start ,'to ',destination)
xyz=leftFirstDepthFirst(y,source,destination,[],0)

获取元素 11 和 12 的路径,但不获取元素 13、14 或 15 的路径。即 destination=fetchTerminalNode(y,2) 没有 work.Can 请任何人提出解决此问题的方法。

给定一个 tree

tree = \
  [ [1]
  , [2, 3]
  , [4, 5, 6]
  , [7, 8, 9, 10]
  , [11, 12, 13, 14, 15]
  ]

还有一个traverse函数

def traverse (tree):
  def loop (path, t = None, *rest):
    if not rest:
      for x in t:
        yield path + [x]
    else:
      for x in t:
        yield from loop (path + [x], *rest)
  return loop ([], *tree)

遍历所有路径...

for path in traverse (tree):
  print (path)

# [ 1, 2, 4, 7, 11 ]
# [ 1, 2, 4, 7, 12 ]
# [ 1, 2, 4, 7, 13 ]
# [ 1, 2, 4, 7, 14 ]
# [ 1, 2, 4, 7, 15 ]
# [ 1, 2, 4, 8, 11 ]
# [ 1, 2, 4, 8, 12 ]
# ...
# [ 1, 3, 6, 9, 15 ]
# [ 1, 3, 6, 10, 11 ]
# [ 1, 3, 6, 10, 12 ]
# [ 1, 3, 6, 10, 13 ]
# [ 1, 3, 6, 10, 14 ]
# [ 1, 3, 6, 10, 15 ]

或者收集列表中的所有路径

print (list (traverse (tree)))
# [ [ 1, 2, 4, 7, 11 ]
# , [ 1, 2, 4, 7, 12 ]
# , [ 1, 2, 4, 7, 13 ]
# , [ 1, 2, 4, 7, 14 ]
# , [ 1, 2, 4, 7, 15 ]
# , [ 1, 2, 4, 8, 11 ]
# , [ 1, 2, 4, 8, 12 ]
# , ...
# , [ 1, 3, 6, 9, 15 ]
# , [ 1, 3, 6, 10, 11 ]
# , [ 1, 3, 6, 10, 12 ]
# , [ 1, 3, 6, 10, 13 ]
# , [ 1, 3, 6, 10, 14 ]
# , [ 1, 3, 6, 10, 15 ]
# ]

上面,我们使用了 Python 中的 high-level 功能的生成器。也许您想了解如何使用更原始的功能来实现解决方案...

我们在这里寻找的通用机制是列表 monad,它捕捉了模糊计算的思想;某些程序可能 return 可能 多个 值。

Python 已经提供了列表以及使用 [] 构建它们的方法。我们只需要提供绑定操作,下面命名为flat_map

def flat_map (f, xs):
  return [ y for x in xs for y in f (x) ]

def traverse (tree):
  def loop (path, t = None, *rest):
    if not rest:
      return map (lambda x: path + [x], t)
    else:
      return flat_map (lambda x: loop (path + [x], *rest), t)
  return loop ([], *tree)

print (traverse (tree))
# [ [ 1, 2, 4, 7, 11 ]
# , [ 1, 2, 4, 7, 12 ]
# , [ 1, 2, 4, 7, 13 ]
# , ... same output as above ...
# ]

哦,Python 有一个 built-in product 函数,正好可以满足我们的需要。唯一的区别是路径将输出为元组 () 而不是列表 []

from itertools import product

tree = \
  [ [1]
  , [2, 3]
  , [4, 5, 6]
  , [7, 8, 9, 10]
  , [11, 12, 13, 14, 15]
  ]

for path in product (*tree):
  print (path)

# (1, 2, 4, 7, 11)
# (1, 2, 4, 7, 12)
# (1, 2, 4, 7, 13)
# (1, 2, 4, 7, 14)
# (1, 2, 4, 7, 15)
# ... same output as above ...

在您的程序中,您试图通过各种 类、nodeedge 以及 diagraph 来抽象此机制。最终,您可以根据需要构建程序,但要知道它不需要比我们在这里编写的更复杂。


更新

正如 在评论中指出的那样,我上面的程序生成的路径就好像每个 parent 都连接到 all children。然而,这是一个错误,因为您的图表显示 parents 仅连接到 adjacent children。我们可以通过修改我们的程序来解决这个问题——在 bold

中进行以下更改
def traverse (tree):
  def loop (path, <b>i,</b> t = None, *rest):
    if not rest:
      for <b>(j,</b>x<b>)</b> in <b>enumerate (</b>t<b>)</b>:
        <b>if i == j or i + 1 == j:</b>
          yield path + [x]
    else:
      for <b>(j,</b>x<b>)</b> in <b>enumerate (</b>t<b>)</b>:
        <b>if i == j or i + 1 == j:</b>
          yield from loop (path + [x], <b>j,</b> *rest)
  return loop ([], <b>0,</b> *tree)

上面我们使用索引 ij 来确定哪些节点是 "adjacent" 但它使我们的 loop 变得混乱。另外,新代码看起来引入了一些重复。给这个意图一个名字 adjacencies 让我们的功能更干净

def traverse (tree):
  <b>def adjacencies (t, i):
    for (j, x) in enumerate (t):
      if i == j or i + 1 == j:
        yield (j, x)</b>

  def loop (path, i, t = None, *rest):
    if not rest:
      for <b>(_, x)</b> in <b>adjacencies (t, i)</b>:
        yield path + [x]
    else:
      for <b>(j, x)</b> in <b>adjacencies (t, i)</b>:
        yield from loop (path + [x], j, *rest)

  return loop ([], 0, *tree)

使用是一样的,只不过这次我们得到的是原题中指定的输出

for path in traverse (tree):
  print (path)

# [1, 2, 4, 7, 11]
# [1, 2, 4, 7, 12]
# [1, 2, 4, 8, 12]
# [1, 2, 4, 8, 13]
# [1, 2, 5, 8, 12]
# [1, 2, 5, 8, 13]
# [1, 2, 5, 9, 13]
# [1, 2, 5, 9, 14]
# [1, 3, 5, 8, 12]
# [1, 3, 5, 8, 13]
# [1, 3, 5, 9, 13]
# [1, 3, 5, 9, 14]
# [1, 3, 6, 9, 13]
# [1, 3, 6, 9, 14]
# [1, 3, 6, 10, 14]
# [1, 3, 6, 10, 15]

这个简单的 adjancies 函数起作用的原因是您的输入数据是统一且有效的。您可以通过图像中的 color-coding 路径清楚地看到索引 ii + 1。我们永远不必担心 index-out-of-bounds 错误,因为您可以看到 i + 1 永远不会在没有 children 的节点(即最后一行)上计算。如果您要指定 无效 数据,traverse 不保证有效结果。

PFB 我想出的函数使用 breathfirstSearch 打印根节点和结束节点之间的所有可用路径。

Google Colab/github link

def breathfirstalgo(graph,tempPaths,finalPath):
## iterates over all the lists inside the tempPaths and checks if there are child nodes to its last node.
condList=[graph.getChildrenof(apartList[-1]) for apartList in tempPaths if graph.getChildrenof(apartList[-1])]

tempL=[]    
if condList:

    for partialList in tempPaths:
        #get the children of the last element of partialList
        allchild=graph.getChildrenof(partialList[-1])

        if allchild:
            noOfChild=len(allchild)
            #create noOfChild copies of the partialList
            newlist=[partialList[:] for _ in range(noOfChild)]      
            #append the a child element to the new list
            for i in range(noOfChild):
                newlist[i].append(allchild[i])

            #append each list to the temp list tempL
            for alist in newlist:
                tempL.append(alist)

        else:
            pass

    #after completion of the for loop i.e iterate through 1 level
    return breathfirstalgo(graph,tempL,finalPath)
else:
    #append all the lists from tempPaths to finalPath that will be returned
    for completePath in tempPaths:
        finalPath.append(completePath)
    return finalPath

如下测试 breathfirstsearch 解决方案。

mygraph=createmygraph(myString)
print('The graph object is ',mygraph)
print('The root node is ',mygraph.rootNode())
#print(mygraph)
all_list=breathfirstalgo(mygraph,tempPaths=[[mygraph.rootNode()]],finalPath=[])

print('alllist is ')
for idx,partlist in enumerate(all_list):
    print(printPath(partlist))

将节点class的__str__修改为str(self.value)

后输出如下
The graph object is  <__main__.Diagraph object at 0x7f08e5a3d128>
The root node is  1
alllist is 
-->1-->2-->4-->7-->11
-->1-->2-->4-->7-->12
-->1-->2-->4-->8-->12
-->1-->2-->4-->8-->13
-->1-->2-->5-->8-->12
-->1-->2-->5-->8-->13
-->1-->2-->5-->9-->13
-->1-->2-->5-->9-->14
-->1-->3-->5-->8-->12
-->1-->3-->5-->8-->13
-->1-->3-->5-->9-->13
-->1-->3-->5-->9-->14
-->1-->3-->6-->9-->13
-->1-->3-->6-->9-->14
-->1-->3-->6-->10-->14
-->1-->3-->6-->10-->15