覆盖分区 table Bigquery 的一些分区
Overwrite some partitions of a partitioned table Bigquery
我目前正在尝试开发数据流管道以替换分区 table 的某些分区。我有一个自定义分区字段,它是一个日期。我的管道的输入是一个可能具有不同日期的文件。
我开发了一个管道:
PipelineOptionsFactory.register(BigQueryOptions.class);
BigQueryOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().as(BigQueryOptions.class);
Pipeline p = Pipeline.create(options);
PCollection<TableRow> rows = p.apply("ReadLines", TextIO.read().from(options.getFileLocation()))
.apply("Convert To BQ Row", ParDo.of(new StringToRowConverter(options)));
ValueProvider<String> projectId = options.getProjectId();
ValueProvider<String> datasetId = options.getDatasetId();
ValueProvider<String> tableId = options.getTableId();
ValueProvider<String> partitionField = options.getPartitionField();
ValueProvider<String> columnNames = options.getColumnNames();
ValueProvider<String> types = options.getTypes();
rows.apply("Write to BQ", BigQueryIO.writeTableRows()
.withCreateDisposition(BigQueryIO.Write.CreateDisposition.CREATE_IF_NEEDED)
.withCustomGcsTempLocation(options.getGCSTempLocation())
.to(new DynamicDestinations<TableRow, String>() {
@Override
public String getDestination(ValueInSingleWindow<TableRow> element) {
TableRow date = element.getValue();
String partitionDestination = (String) date.get(partitionField.get());
SimpleDateFormat from = new SimpleDateFormat("yyyy-MM-dd");
SimpleDateFormat to = new SimpleDateFormat("yyyyMMdd");
try {
partitionDestination = to.format(from.parse(partitionDestination));
LOG.info("Table destination "+partitionDestination);
return projectId.get()+":"+datasetId.get()+"."+tableId.get()+"$"+partitionDestination;
} catch(ParseException e){
e.printStackTrace();
return projectId.get()+":"+datasetId.get()+"."+tableId.get()+"_rowsWithErrors";
}
}
@Override
public TableDestination getTable(String destination) {
TimePartitioning timePartitioning = new TimePartitioning();
timePartitioning.setField(partitionField.get());
timePartitioning.setType("DAY");
timePartitioning.setRequirePartitionFilter(true);
TableDestination tableDestination = new TableDestination(destination, null, timePartitioning);
LOG.info(tableDestination.toString());
return tableDestination;
}
@Override
public TableSchema getSchema(String destination) {
return new TableSchema().setFields(buildTableSchemaFromOptions(columnNames, types));
}
})
.withWriteDisposition(BigQueryIO.Write.WriteDisposition.WRITE_TRUNCATE)
);
p.run();
}
当我在本地触发管道时,它成功地替换了输入文件中日期的分区。然而,当在 Google Cloud Dataflow 和 运行 上部署具有完全相同参数的模板时,它会截断所有数据,最后我只有我想上传的文件 table.
你知道为什么会有这样的差异吗?
谢谢!
您将 BigQueryIO.Write.CreateDisposition 指定为 CREATE_IF_NEEDED,这与 BigQueryIO.Write.WriteDisposition.WRITE_TRUNCATE 配对,因此即使 table 存在,也可能会重新创建。这就是为什么您看到 table 被替换的原因。
有关详细信息,请参阅此文档 [1]。
我目前正在尝试开发数据流管道以替换分区 table 的某些分区。我有一个自定义分区字段,它是一个日期。我的管道的输入是一个可能具有不同日期的文件。
我开发了一个管道:
PipelineOptionsFactory.register(BigQueryOptions.class);
BigQueryOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().as(BigQueryOptions.class);
Pipeline p = Pipeline.create(options);
PCollection<TableRow> rows = p.apply("ReadLines", TextIO.read().from(options.getFileLocation()))
.apply("Convert To BQ Row", ParDo.of(new StringToRowConverter(options)));
ValueProvider<String> projectId = options.getProjectId();
ValueProvider<String> datasetId = options.getDatasetId();
ValueProvider<String> tableId = options.getTableId();
ValueProvider<String> partitionField = options.getPartitionField();
ValueProvider<String> columnNames = options.getColumnNames();
ValueProvider<String> types = options.getTypes();
rows.apply("Write to BQ", BigQueryIO.writeTableRows()
.withCreateDisposition(BigQueryIO.Write.CreateDisposition.CREATE_IF_NEEDED)
.withCustomGcsTempLocation(options.getGCSTempLocation())
.to(new DynamicDestinations<TableRow, String>() {
@Override
public String getDestination(ValueInSingleWindow<TableRow> element) {
TableRow date = element.getValue();
String partitionDestination = (String) date.get(partitionField.get());
SimpleDateFormat from = new SimpleDateFormat("yyyy-MM-dd");
SimpleDateFormat to = new SimpleDateFormat("yyyyMMdd");
try {
partitionDestination = to.format(from.parse(partitionDestination));
LOG.info("Table destination "+partitionDestination);
return projectId.get()+":"+datasetId.get()+"."+tableId.get()+"$"+partitionDestination;
} catch(ParseException e){
e.printStackTrace();
return projectId.get()+":"+datasetId.get()+"."+tableId.get()+"_rowsWithErrors";
}
}
@Override
public TableDestination getTable(String destination) {
TimePartitioning timePartitioning = new TimePartitioning();
timePartitioning.setField(partitionField.get());
timePartitioning.setType("DAY");
timePartitioning.setRequirePartitionFilter(true);
TableDestination tableDestination = new TableDestination(destination, null, timePartitioning);
LOG.info(tableDestination.toString());
return tableDestination;
}
@Override
public TableSchema getSchema(String destination) {
return new TableSchema().setFields(buildTableSchemaFromOptions(columnNames, types));
}
})
.withWriteDisposition(BigQueryIO.Write.WriteDisposition.WRITE_TRUNCATE)
);
p.run();
}
当我在本地触发管道时,它成功地替换了输入文件中日期的分区。然而,当在 Google Cloud Dataflow 和 运行 上部署具有完全相同参数的模板时,它会截断所有数据,最后我只有我想上传的文件 table.
你知道为什么会有这样的差异吗?
谢谢!
您将 BigQueryIO.Write.CreateDisposition 指定为 CREATE_IF_NEEDED,这与 BigQueryIO.Write.WriteDisposition.WRITE_TRUNCATE 配对,因此即使 table 存在,也可能会重新创建。这就是为什么您看到 table 被替换的原因。
有关详细信息,请参阅此文档 [1]。