为什么 silhouette_score 总是在此 Iris 数据集上返回 0?
Why is silhouette_score always returning 0 on this Iris dataset?
我正在测试 Scikitlearn 的一些功能,虽然它们的 example 对我来说很好用,returns 一个剪影数字,当我在 Iris 数据集上做同样的事情时,它显示了一个聚类,然后始终为轮廓平均值输出 0:
from sklearn import datasets
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
import matplotlib.pyplot as plt
iris = datasets.load_iris()
print(dir(iris))
print(iris.DESCR)
#print(iris.data[:,1:3]) second and third part of each, columns.
X = iris.data[:, 1:3]
for i in range(2,11):
model = KMeans(n_clusters=i, random_state=0)
model.fit(X)
#print(model.labels_) #Different number for each "cluster" found.
centroids = model.cluster_centers_
#Separate xs [:, 0], ys [:,1] and scatter plot:
plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=170, zorder=10, c='m')
plt.scatter(X[:, 0], X[:, 1], c=model.labels_)
#print(plt.scatter.__doc__) # <--- what are the arguments?
plt.xlabel("Sepal width")
plt.ylabel("Petal length")
print(X)
print(model.labels_)
print('For %d clusters the average silhouette score is %d' % (i, silhouette_score(X, model.labels_)))
plt.show()
为什么要这样做,因为它似乎给了它一个与 Scikit 示例相似的 X 数组和标签?
将打印语句切换为:
print('For %f clusters the average silhouette score is %f' % (i, silhouette_score(X, model.labels_)))
或者:
print('For {} clusters the average silhouette score is {}'.format(i, silhouette_score(X, model.labels_)))
或者:
print(f"For {i} clusters the average silhouette score is {silhouette_score(X, model.labels_)}")
...解决了这个问题。
正如@shahaf 在评论中所述,您正在从 float 转换为 int (%d)。
我正在测试 Scikitlearn 的一些功能,虽然它们的 example 对我来说很好用,returns 一个剪影数字,当我在 Iris 数据集上做同样的事情时,它显示了一个聚类,然后始终为轮廓平均值输出 0:
from sklearn import datasets
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
import matplotlib.pyplot as plt
iris = datasets.load_iris()
print(dir(iris))
print(iris.DESCR)
#print(iris.data[:,1:3]) second and third part of each, columns.
X = iris.data[:, 1:3]
for i in range(2,11):
model = KMeans(n_clusters=i, random_state=0)
model.fit(X)
#print(model.labels_) #Different number for each "cluster" found.
centroids = model.cluster_centers_
#Separate xs [:, 0], ys [:,1] and scatter plot:
plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=170, zorder=10, c='m')
plt.scatter(X[:, 0], X[:, 1], c=model.labels_)
#print(plt.scatter.__doc__) # <--- what are the arguments?
plt.xlabel("Sepal width")
plt.ylabel("Petal length")
print(X)
print(model.labels_)
print('For %d clusters the average silhouette score is %d' % (i, silhouette_score(X, model.labels_)))
plt.show()
为什么要这样做,因为它似乎给了它一个与 Scikit 示例相似的 X 数组和标签?
将打印语句切换为:
print('For %f clusters the average silhouette score is %f' % (i, silhouette_score(X, model.labels_)))
或者:
print('For {} clusters the average silhouette score is {}'.format(i, silhouette_score(X, model.labels_)))
或者:
print(f"For {i} clusters the average silhouette score is {silhouette_score(X, model.labels_)}")
...解决了这个问题。
正如@shahaf 在评论中所述,您正在从 float 转换为 int (%d)。